
AppLens and LaunchTile: Two Designs for One-Handed
Thumb Use on Small Devices

Amy K. Karlson, Benjamin B. Bederson
Human-Computer Interaction Lab

Computer Science Department
Univ. of Maryland, College Park, MD, 20742

{akk, bederson}@cs.umd.edu

John SanGiovanni
Microsoft Research

One Microsoft Way, Redmond, WA 98052
johnsang@microsoft.com

ABSTRACT
We have designed two interfaces to support one-handed
thumb use for PDAs and cell phones. Both use Scalable
User Interface (ScUI) techniques to support multiple
devices with different resolutions and aspect ratios. The
designs use variations of zooming interface techniques to
provide multiple views of application data: AppLens uses
tabular fisheye to access nine applications, while
LaunchTile uses pure zoom to access thirty-six
applications. Two sets of thumb gestures represent
different philosophies for one-handed interaction. We
conducted two studies to evaluate our designs. The first
study explored whether users could learn and execute the
AppLens gesture set with only minimal training.
Participants performed more accurately and efficiently
using semantic gestures for directional navigation than
abstract gestures for object interaction. A second study
gathered user reactions to each interface, as well as
comparative preferences. With minimal exposure to each
design, most users favored the tabular fisheye interface.

Author Keywords
One-handed, mobile devices, gestures, notification,
Piccolo, thumb navigation, Zoomable User Interfaces
(ZUIs).

ACM Classification Keywords
H.5.2. User Interfaces: Input devices and strategies

INTRODUCTION
The current generation of mobile computing hardware
features a variety of devices for interaction with the
system software. Many of the devices, typically classified
as “smartphones”, feature a numeric keypad or miniature
thumb keyboard for input together with a ruggedized
screen for display output. These devices have the

advantage of single-handed interaction, but most
smartphones lack a touch-sensitive display, limiting the
options for interaction design to simple directional
navigation. Another design approach, typically classified
as a “Personal Digital Assistant” (PDA) features a touch-
sensitive display surface designed primarily to be used
with an included stylus. This design offers greater
software design flexibility, but many of the small targets
designed for a stylus are too small for fingertip actuation,
making one-handed use difficult or impossible.

Our goal is to create a new single-handed interaction
system for both smartphone and PDA devices. In addition
to providing support for varied input hardware, our
designs are also informed by Scalable User Interface
(ScUI) techniques [2,3]. This design philosophy allows
the system to adapt to different screen resolutions, and
supports either portrait or landscape device rotation. Such
an architecture could allow developers to create
individual applications that target a wide variety of screen
resolutions. The display size range of this design study
was defined to target screens from 2” to 5”, measured
diagonally, with resolutions ranging from 176x220 to
800x600. This is accomplished by using the University of
Maryland’s Piccolo.NET development toolkit for
zooming and scalable user interfaces [5,16].

The secondary goal of this project is to support rich
notification from multiple applications. Most current PDA
interfaces are designed for focused interaction with a
single task or application, with limited consideration or
display real estate allocated for notifications (instant
messages, SMS/MMS, email, appointment reminders,
voicemail) or monitoring of ambient information streams
(RSS feeds, web services, stocks, weather, sports scores).
In our proposed design, each application has a dynamic
information launch tile in the place of a static launch icon.
This feature provides the user the ability to glance at the
interface and get quick access to current information with
little or no device interaction.

The primary focus of this paper addresses the shell and
notification area. We approach these goals by describing
two designs: AppLens (characterized by zoom+fisheye)
and LaunchTile (characterized by zoom+pan). The two
approaches employ variations of zooming interface

 1

techniques [1] to overview several notification tiles, each
roughly the size of a postage stamp. AppLens uses a
tabular fisheye approach to provide integrated access to
and notification for nine applications. LaunchTile uses
pure zooming within a landscape of thirty-six applications
to accomplish the same goals.

Fisheye and pure zoomable techniques both offer
promise, but there are no clear guidelines as to when each
approach should be used. So our approach in this work
has been to design and build the best interfaces we could
with roughly the same functionality, and then compare
and contrast the results. In this way, we hope to
understand which design direction makes the most sense
for this domain and to learn something about the trade-
offs between the two approaches.

For device interaction when using a touch-sensitive
screen, both designs utilize a basic gestural system for
navigation within the notification and application zoom
canvas. While this paper does not address single-handed
text input techniques, we included a modular InputTile
concept in order to support a variety of one-handed input
systems, including single- and multi-tap alphanumeric
keypad input, as well as miniature thumb keyboards and
unistroke input systems executed with a thumb (e.g.,
Graffiti[6], Quikwriting[15]).

RELATED WORK
Gestures have proven a popular interaction alternative
when hardware alone fails to effectively support user
tasks, typical of many nontraditional devices, from mobile
computers to wall-sized displays [9]. Gestures can be very
efficient, combining both command and operand in a
single motion, and is space-conserving, reducing the need
for software buttons and menus. However, the invisible
nature of gestures can make them hard to remember, and
recognition errors can negatively impact user satisfaction
[13]. Recent research efforts pairing gestures with PDA-
sized devices, have emphasized gestures based on
changes in device position or orientation [10,19,25].
However, our work more closely resembles the onscreen
gestures that have played a prominent role in stylus-based
mobile computing. Such efforts can be roughly
categorized as application-specific (e.g., Power Browser
[7]) or general purpose (e.g., Quikwriting [15]).

Our thumb-as-stylus designs support usage scenarios in
which only one hand is available for device operation,
such as talking on the phone or carrying a briefcase.
Although existing stylus-based gesture systems do not
preclude the use of the thumb, we are not aware of any
systems that have been specifically designed for the
limited precision and extent of the thumb. One handed
device interaction has typically focused on text entry
techniques, but beyond one-handed text entry on a
numeric keypad, most one-handed text entry systems,

including those specifically designed for thumb-based
entry, require specialized hardware, such as
accelerometers [23,27] or customized keyboards [14]. Our
one-handed designs target existing hardware platforms
and address the general task of system navigation and
interaction, in a manner that is both device and
application independent. The Jackito PDA [12] supports
thumb-only interaction, but presumes two handed use and
is not gesture oriented.

THE ZOOM+FISHEYE APPROACH: APPLENS
AppLens provides notification and one-handed access to
nine applications, and is strongly motivated by DateLens,
a tabular fisheye calendar [3]. We refer to AppLens as a
“shell” application for its role in organizing and managing
access to other applications

Generalized Data Access Using Tabular Fisheyes
Spence and Apperley [8] introduced the “bifocal display”
as one of the first examples of fisheye distortion applied
to computer interfaces. Furnas extended the bifocal
display to include cognitive perceptual strategies and
introduced a set of analytical functions to automatically
compute generalized fisheye effects [8]. Since then,
fisheye distortion has been applied with mixed success
across a variety of domains, including graphs [22],
networks [24], spreadsheets [18], and documents [11,21].

Bederson et al. [3] drew upon prior work in fisheye
calendars and tables in developing DateLens, a space-
conserving calendar for personal digital assistants
(PDAs), which performed favorably for long-term
scheduling and planning tasks when compared to a
traditional calendar implementation. The strength of
DateLens lay partly in the pairing of distortion and
scalability, which allowed the details of a single day to be
viewed in the context of up to several months of
appointment data, and partly in the design of effective
representations for the variety of cell sizes and aspect
ratios resulting from tabular distortion. One drawback of
DateLens, however, was that it required two hands, with
many small widgets requiring a stylus to use. The current
designs extend the principles of DateLens to include one-
handed thumb access and generalize the design for use
across a variety of domains.

We developed a general framework that provides a grid,
tabular layout, and default views for cell contents at a
variety of sizes and aspect ratios. We also developed a
general API to make it as easy as possible for applications
to be built within this framework: developers replace a
small number of cell views with representations that are
meaningful within the target domain.

AppLens Notification
The AppLens shell has been implemented within our
generalized tabular fisheye framework, using a 3x3 grid,

 2

and assigning one of nine applications to each cell. The
support for tabular layout includes notification at 3 zoom
levels: Notification, Context and Full.

Notification distributes the available screen real estate
equally among the 9 application tiles (Figure 1a). One tile
remains reserved for settings, which can be used to
configure the selection of applications which occupy the
other 8 notification tiles. Generally, tiles at Notification
size display high level static and/or dynamic application-
specific notification information.

Context zoom allocates roughly half the available display
area to a single focus tile, compressing the remaining tiles
according to a tabular fisheye distortion technique [3,18]
(Figure 1c). A tile at Context size typically appears much
like a fully functional application, but selectively displays
features to accommodate display constraints, and is not
interactive. Tiles on the periphery of a Context zoom, or
peripheral tiles, may be rendered quite differently
depending on their position relative to the focus tile,
which dictates whether the peripheral tile is a square, a
wide-flat rectangle, or a narrow-tall rectangle. To reduce
visual overload at Context size, peripheral tiles are
displayed at 40% transparency. The contents of distorted
peripheral tiles are not themselves distorted, but rather
change representation to provide the most meaning in the
space available.

The third and final Full zoom level expands a tile to a
fully interactive application that occupies 100% of the
display (Figure 1b).

Gesture-Based Cursor Navigation
Existing application designs for PDAs are often
inappropriate for one-handed use due to their reliance on
screen regions that typically cannot be reached while
maintaining control of the device (e.g., accessing the Start
menu in the upper left-hand corner of a display while
holding the device in the right hand), and the use of
standard widgets that are too small for reliable thumb use
(e.g., radio buttons, checkboxes, and on-screen
keyboards). LaunchTile solves this problem by
redesigning application access and interaction such that
all targets are both large and within thumb reach. In
support of more traditional designs, AppLens instead uses
an object cursor, depicted as a dynamically-sized
rectangular orange border that users move from one on-
screen object to another via command gestures issued
anywhere on the PDA screen. Although PDAs do not
traditionally support cursors as desktops do, our cursor
identifies the on-screen object that is the current
interaction target. However, cursors are not new to PDA
interface design: the WebThumb [28] web browser
includes a similar notion of cursor, but which is controlled
via directional hardware, and others [26] have explored
device tilting to manipulate PDA cursors.

Neither the cursor nor gestures interfere with the most
common stylus interactions of tap and tap+hold. Although
gestures do overlap stylus drag commands, dragging is
rarely used in applications and could be distinguished
from gestures by explicitly setting a gesture input mode.

We established a core set of commands that would allow
users to navigate applications using only the input cursor.
Our command language supports directional navigation
(UP, DOWN, LEFT, RIGHT) as well as two widget
interaction commands: one equivalent to a stylus tap
(ACTIVATE), and the other which negates activation
(CANCEL), equivalent to tapping the stylus outside the
target widget. We also include the convenience
commands FORWARD and BACKWARD, equivalent to TAB
and SHIFT-TAB on Windows PCs.

 (a) (b)

 (c) (d)

Figure 1. AppLens Zoom Levels: (a) Notification, (b) Full,
(c, d) Context.

Command Gestures
We based the gesture set on the limited abilities of and
range of motion of thumbs (Figure 2), and we had a goal

 3

of creating a gesture language that could be learned with
minimal training. After informally experimenting with a
variety of gestures, we developed a simple set of gestures
with the aim of maximize memorability and robustness of
execution (Figure 3). We assigned semantic mappings for
the directional commands UP, DOWN, LEFT and RIGHT.
Two gestures defined by pivoting the thumb from bottom
to top and top to bottom we assigned to ACTIVATE and
CANCEL respectively, both to reinforce their opposing
relationship as well as for ergonomic ease in issuing
common commands. Finally, we assigned the upper-left
to lower-right diagonal to FORWARD due to its relative
forward nature, and by similar reasoning, the reverse
gesture to BACKWARD. Each gesture is uniquely defined
by a slope and direction, or vector, which allows gestures
to be robust and highly personalizable: users can issue
gestures of any length (beyond an activation threshold of
20 pixels) anywhere on the screen surface.

The eight commands corresponding to the gestures can
also be activated with a numeric keypad that corresponds
to the location of the endpoint of the gesture: 1-
BACKWARD, 3-ACTIVATE, 7-CANCEL, and 9-FORWARD.
Since smartphones have a joystick which can be used for
UP, DOWN, LEFT and RIGHT, the numeric keypad isn’t
necessary, but the 2,4,6 and 8 keys can also be used for
movement in the corresponding directions.

Figure 2. Screen area Figure 3. The gesture set.
accessible with one hand.

Using Command Gestures within AppLens
AppLens zoom levels can be changed using ACTIVATE
and CANCEL gesture commands. The ACTIVATE command
gesture propagates the equivalent of a stylus tap to the
current input target, hence its effects are target-specific.
The ACTIVATE gesture zooms in, animating the layout
first from Notification to Context zoom, and then to Full
zoom. Once at Full zoom, the input cursor will transition
to the objects within the application, at which point the
command gestures will affect the current target, not the
application itself. In this way the AppLens architecture is
hierarchical. The CANCEL command acts to negate the
effects of the ACTIVATE command. At Full zoom, the
effects of the CANCEL command depend on the location of
the cursor and the state of its target. If the current target is
an internal target in an activated state, the CANCEL

command deactivates the target. If, however, the target is
in an inactive state, the CANCEL command causes the
application tile to animate from Full zoom to Context
Zoom, and if issued again, to Notification zoom.

THE ZOOM+PAN APPROACH: LAUNCHTILE
Our second design, LaunchTile proposes another way to
interact with a grid of notification tiles. The primary shell
of the LaunchTile design is an interactive zoomspace
consisting of 36 notification tiles, divided into 9 zones of
4 tiles each. As a central design element, LaunchTile uses
a large blue onscreen button (called Blue) to provide a
consistent point of reference for zooming and panning
navigation, and to unify the shell and applications with a
consistent visual metaphor. Onscreen tiles, menus, and
functions maintain a consistent relative position to Blue.

Home Screen
The Home screen of LaunchTile divides the screen area
into 4 equally-sized notification tiles (Figure 4a). The
Home screen represents the 4 center-most tiles of the 36-
tile zoomspace. To see other tiles, the user pans around
the space, and the system snaps to each 4-tile group,
called a Zone. In this paper, the zones are described with
a numerical designator from 1 to 9, starting in the upper
left, and going across. This maps to the numbers on a
conventional telephone keypad. Zone 5 is the center zone,
which defines the home screen, and shows the 4 highest
priority notification tiles, as configured by the user.

Panning Techniques
To support different input hardware and various styles of
interaction, there are several ways to pan around the
zoomspace. If the device has a multidirectional control
joystick, the user can push it in the direction of the
targeted zone. This design permits the user to quickly
glance at the 4 highest priority tiles with no interaction,
and the 16 tiles in zones 2, 4, 6, and 8 are a single tap
away. As many directional pads do not support diagonal
action, the 16 additional tiles in the corner zones 1, 3, 7,
and 9 are two taps away. As with AppLens, the
zoomspace does not wrap. There are also three other
panning techniques. If the device has a touch-sensitive
display, the user can use his or her thumb to drag the
canvas around. When doing so, dragging action is “on
rails”, permitting the user to drag vertically and
horizontally, but not diagonally. When panning, Blue
remains stationary, and snaps the view to the center of
each zone, represented by an empty circular space in the
hub of 4 tiles in the zone. These virtual guides help keep
the user from getting caught between zones.

Within each 4-tile zone, we’ve also designed an indicator
widget to show the user’s relative location within the
zoomspace. The indicator has two components. First,
directional arrows show where other zones are. If users
only see indicators pointing up and right, they know they

 4

are in zone 7. Next to the directional arrows are blue dots
that represent all zones not currently in view. The blue
dots could also be used to indicate an alert or status
change in a neighboring zone, though this feature was not
implemented in our prototype. The fourth way to pan
around the zoomspace is to press this directional indicator
itself. An oversized hit target ensures that the user can
easily hit this without using a stylus.

 (a) (b)

(c) (d)

Figure 4. Three LaunchTile zoom levels: (a, b) Home, (c)
World View, (d) Application

Zooming out to the World View
From any one of the nine 4-tile zones, the user also has
the option to zoom out to view the entire 36-tile
zoomspace (Figure 4c). Since all 36 tiles are visible at
once, this view reduces each tile to a small launch icon or
miniature visualization. From this view, the user can
clearly see the absolute location of each tile. This view,
called the World View, is a way to monitor all

applications at once. In the World view, the display is
divided into a grid of 9 hit targets, each mapping a 4-tile
zone. Single-tapping a zone animates into that zone, and
displays the zone’s 4 notification tiles.

Zooming In to an Application
From any zone, the user taps any of the 4 notification tiles
to launch the corresponding application. The point of
view follows a zooming animation further into the
zoomspace until the target application fills the entire
display (Figure 4d). If the device has only a numeric
keypad (no touchscreen), the user simply presses the
numeric key in the corner that corresponds to the zone.
Pressing 1 launches the upper left tile, 3 launches the
upper right, 7 launches the lower left, 9 launches the
lower right. This provides quick, single-tap access to each
visible tile. This technique is inspired by ZoneZoom by
Robbins et al. [20].

As the system zooms, Blue stays in view and retains its
function as a central point of reference. Application menu
commands are represented as on-screen buttons clustered
around Blue, now positioned at the bottom of the display.
Each menu button has its appropriate numeric label to
further illustrate its mapping to a mobile phone keypad.
This allows a smartphone user to access application
commands by pressing the corresponding keypad number.

A visual indicator to the left of the zoomspace animates
during interaction to reflect the user’s current absolute
zoom level within the LaunchTile environment.

Zoom Control
In every screen but Home, the user presses Blue to move
deeper into the object hierarchy. A dedicated Back button,
both on-screen and in hardware, takes the user back out.
In the Home screen, Blue toggles between the two
different notification views, Home (4 tiles are visible) and
World View (all 36 tiles are visible). Once an application
is launched, three dedicated software buttons along the
top edge of the screen support inter- and intra-application
navigation. A green Home button immediately zooms the
view out to Home view. There is also a Back button on
the upper right edge of the screen, and another global
command key. The placeholder for this function in our
prototype is an icon for voice command and control. On a
non-touchscreen device, Back and Home commands are
executed with dedicated physical buttons, such as those
provided on a smartphone device.

Application-Level Interaction
Although the focus of these designs was notification and
shell interaction, we continued our interaction philosophy
throughout the depth of the zoomspace, into the
application level. In the LaunchTile prototype, we
attempted to make application-level interaction consistent
with navigation among the notification tiles. Within an

 5

application, several gestures are supported which are
designed specifically for single-handed navigation and
item selection. Previously, others have demonstrated that
for direct-manipulation interfaces, a grounded tap-drag-
select-release technique is more accurate than a tap-to-
select [17]. As such, we made all LaunchTile tap-to-select
targets at least 35x35 pixels. In those areas where limited
display real estate necessitates smaller targets, the central
Blue widget becomes a moveable tool glass which can be
positioned over the desired object, email, or text. The
large thumb-friendly drag target is offset below the
selection area, to keep the user’s thumb from occluding
the target. Alternatively, the user can drag anywhere
around Blue to move the application space. This
technique can be used to pan around a map, scroll a list of
emails, or to navigate to text outside the view area.
Together, these two interaction techniques permit the user
to address a large application zoomspace, yet bring focus
to a target much smaller than a finger. A non-touchscreen
user simply uses the multidirectional joystick to position
the selection area on the screen. Keys 2 and 8 are used for
page control up & down, and 4 and 6 can be either menu
items or horizontal page control, as appropriate.

Once the targeted item is in the toolglass selection area, a
tap on Blue (also supported through hardware via the 5
key) replaces the application menus with a context-
sensitive menu, now clustered immediately around the
selection area. Like the menu items, each key on a
numeric keypad executes its function as relative to Blue.
A second tap on Blue sends the user to the deepest level
of the zoomspace, text input. At this level, a modular text
input object called an InputTile appears around the
selection area for alphanumeric input. If the user has a
mini qwerty keyboard, they can alternatively use this for
directly entering text. With this design, a double tap on
Blue while text is selected will bypass the context menu
and take the user directly into text edit mode.

IMPLEMENTATION
The AppLens and LaunchTile prototypes have been built
using the University of Maryland’s PocketPiccolo.NET
development toolkit for Zoomable User Interfaces (ZUIs)
[5,16]. Although the primary development and test
platform has been the HP iPAQ PocketPC running
Microsoft Windows Mobile 2003, both run unmodified on
the iMate Smartphone II running Windows Mobile
Smartphone 2003 (Figures 1d and 4b).

Although the core architecture and gesture recognition for
each shell has been implemented, applications have been
simulated with images. This has allowed us to put designs
that are faithful to the look and feel of each shell in the
hands of users for early feedback, but falls short of full
interactivity. However, because LaunchTile design
principles extend to the applications themselves, we have

included email and mapping as two interactive examples
within the LaunchTile prototype.

STUDIES
We conducted two studies to inform future research
directions. The first study explored whether users could
learn and perform the AppLens gesture set with only
minimal training. The second was a usability study which
gathered user reactions to each shell design, as well as
users’ comparative preferences.

APPLENS GESTURE STUDY
A significant difference between the gesture designs of
each shell is that all gestures in LaunchTile are direct
manipulation, while all gestures in AppLens are remote-
control commands. In LaunchTile, users physically drag
objects with their thumbs, be it the zoomspace, a
toolglass, a map, or a list of email headers. In AppLens,
gestures only affect the cursor target, rather than the
objects over which the gesture is performed. The success
of AppLens therefore depends as much on the utility of
the tabular design as the ability for users to execute the
gesture command set. Participants were tested on gesture
execution performance and efficiency in navigating an
information space.

PARTICIPANTS: 20 participants (12 male, 8 female) were
recruited from the general population with the only
selection criteria being that participants were right-
handed. The median participant age was 30, and while 12
of the participants considered themselves advanced
computer users, only 6 regularly used a PDA.

MATERIALS: The study was run on an HP iPAQ
measuring 4.5x2.8x0.5 inches with a 3.5 inch screen. We
constructed a software test environment modeled after
AppLens: a hierarchical tabular information space, with
each level in the hierarchy represented by a 3x3 grid of
equally-distributed cells, numbered 1-9 like a smartphone
keypad. Context zoom was eliminated from the test
environment, so that activating a cell animated the display
to the next level. Cell labels served as navigational
landmarks, each labeled with a hierarchical address
constructed by prepending the cell’s local logical number
(1-9) with its parent’s label, separated by a dot. We
reserved an area at the top of the screen for task
instructions, and disabled tapping to restrict input to
gestures alone. Gestures retained their meaning from
AppLens: Navigational gestures LEFT, RIGHT, UP and
DOWN controlled the movement of an orange rectangular
cursor within a level; ACTIVATE zoomed in to the next
level and CANCEL zoomed out to the previous level.
Within the context of the test environment, FORWARD and
BACKWARD were used for intra-cell selection, allowing
participants to cycle a highlight either forward or
backward through cell label digits. Highlighted digits
could then be bolded or “activated” using the ACTIVATE

 6

gesture or un-bolded or “deactivated” using the CANCEL
gesture. Participants were provided with a reference sheet
that described the hierarchical information space and
labeling scheme, as well as the eight gestures to be used
for navigation and interaction.

TASKS: Participants performed two types of tasks.
Gesture tasks involved performing a gesture given the
associated command name. Navigation tasks required
participants to navigate to a particular cell in the hierarchy
and/or to activate or deactivate a cell label digit.

MEASURES: Application logs recorded task time, the
gestures performed for each task, and whether the task
was completed correctly. Participants were instructed to
press a hardware button between tasks, which served to
record task time and advance to the next task. Due to a
bug in our logging software, task time was recorded at
second rather than millisecond resolution. However,
since our goal was to identify performance trends rather
than comparison to another input method, one second
resolution was sufficient. Participants rated their
experience using a 9-point Likert scale: (1) frustrating –
satisfying, (2) hard to learn – easy to learn, (3) hard to use
– easy to use, (4) slow – fast, and (5) boring – fun.

PROCEDURE: After reading a description of the test
environment and gestures, participants performed 16
practice tasks similar in nature to those in the navigation
task phase. Participants practiced for 5-10 minutes.

After the practice phase, participants performed gesture
tasks: presented with a command name, participants
performed the associated gesture and pressed a hardware
button to advance to the next task. Command names were
presented to participants in random order, four times for
each of the eight commands. The gesture reference sheet
was placed face down so that the administrator could
record the number of times it was looked at.

The second test phase required participants to perform
goal-directed tasks within the information space. These
included navigation, activation, navigation+activation,
and cancellation tasks. Participants then recorded their
subjective ratings of the interaction experience.

Results
In the gesture phase of the study, participants correctly
performed gestures an average of 87% of the time.
However, looking at gesture type, we see that participants
correctly performed directional gestures 93% of the time,
but had more difficulty with diagonal gestures ACTIVATE
and CANCEL at 88% and 85% respectively. BACKWARD
and FORWARD had the worst success rate, at 70% and
64% of the time respectively. Time to perform gestures
followed a similar trend. On average, participants
required 2.4 seconds to perform each gesture: 1.5 – 1.7
seconds for directional gestures, 2.6 – 2.8 seconds for

ACTIVATE and CANCEL gestures, and 3.6 – 3.7 seconds for
BACKWARD and FORWARD gestures respectively. Neither
measure correlated with computer or PDA experience.
Although we tallied user peeks at a reference sheet, we
assume that the acts of page-flipping and answer-
searching have been reflected in the task time, and thus
we did not analyze this data further.

Gesture Efficiency

0
5

10
15
20
25
30
35

A
_1

A
_2

A
_3

A
_4

C
_1

C
_2

C
_3

N
_1

N
_2

N
_3

N
_4

N
_5

N
_6

N
_7

N
A

_1

N
A

_2

Task Name

Nu
m

be
r

of
 G

es
tu

re
s

Bottom Third
Middle Third
Top Third
Optimal

Figure 5. Average number of gestures per task compared

with the optimum.

The second test phase evaluated accuracy and efficiency
for goal-directed navigation tasks. The average task
success rate was 95%. While both navigation and
activation+navigation tasks were performed with 98%
accuracy, activation was close behind at 96%.
Cancellation tasks, however, were only completed
correctly 83% of the time. On average, participants
performed 2.4 additional steps than the optimal number to
complete a task. Breaking participants into three
performance groups for each task, it is clear that one third
of participants performed nearly optimally on all but a
few tasks (Figure 5). The next third of participants
performed comparably to the first third, but the gaps were
wider on the tasks the first third had trouble with. Thus,
the most significant difficulties in performing the
navigation phase tasks were experienced by only a third
of the participants.

The subjective rating for each of our 5 satisfaction
measures on a scale of 1-9 where 9 was positive all fell
within a 1 point span of each other, between 5.9
(satisfying) and 6.75 (fun).

Analysis
Because the gesture phase of the study did not distinguish
between errors of recall and execution, we could not
classify the reasons for error. Analyzing the log files, it is
safe to say that errors of both types occurred. The low
error and speed measures for directional navigation
support our hypothesis that the directional gestures are
semantic in design, presumably contributing to better
learnability, more reliable execution, and lower cognitive
demand. The positive jump in execution speed for the
other four gestures is unsurprising when we consider that
the mappings between gesture and command are more

 7

abstract than the directional mappings, and likely require
more cognitive effort to perform the mental
transformation. This alone does not explain the associated
increase in error rate, but insights from Long’s work on
gesture similarity [13] suggest that users may perceive the
diagonal gestures as similar and therefore more difficult
to learn.

The difference in performance data between ACTIVATE
and CANCEL vs. BACKWARD and FORWARD may be
attributed to the more physically challenging nature of
latter two, but may also be due to disproportionate
practice time received, considering a single navigation
task provided more opportunities to issue ACTIVATE and
CANCEL gestures than intra-cell activation tasks provided
for FORWARD and BACKWARD. These intuitions also help
explain the efficiency results – users were more
successful and efficient in pure navigation tasks which
contained a proportionally large number of directional
gestures compared with intra-cell activation/cancellation
tasks. The relative complexity of the gesture navigation
environment may have confounded the results by inflating
the efficiency measures, but we feel that it also made the
results more relevant to the AppLens design.

APPLENS AND LAUNCHTILE USABILITY STUDY
The goal of our second study was to understand usability
issues for new users of each shell design and to elicit
general reactions and comparative preferences.

PARTICIPANTS: There were 10 participants (8 male, 2
female) from a local scientific research laboratory. 3
participants were in their 20s, 5 in their 30s, and 2 were
40 or older. While all participants considered themselves
advanced computer users, 4 used PDAs regularly, and 4
had never used a PDA.

MEASURES: Participants provided subjective design-
specific and comparative reactions to AppLens and
LaunchTile through think aloud and questionnaires.

MATERIALS: The shell prototypes were run on the same
hardware used in the first study. A one-page document
described the AppLens design and gestures set, followed
by a list of eight associated tasks. A two-page document
described the LaunchTile design and methods for
navigation and interaction, followed by a list of 11 tasks.

TASKS: For each interface, participants performed tasks
which were designed to exercise the full range of
navigation and interaction features. For example,
LaunchTile tasks included navigating to specific zones,
finding specific applications, and opening and editing an
email message. AppLens tasks included navigating to
specific tiles, and answering questions about applications.

PROCEDURE: Study participants were introduced to
each design by reading its design document and
performing each of the related tasks. During the tasks, the

test administrator recorded think-aloud reactions and
usability observations. After task completion, the
administrator recorded answers to open-ended questions
related to the usability of the interface, such as likes and
dislikes, features that were easy or hard to use or learn,
and comfort level. The same procedure was repeated for
the second interface. The administrator balanced the
order of the interfaces among participants. After
interacting with both interfaces, participants were asked
comparative preference questions.

Results
Perhaps due to the richness of the LaunchTile
environment, reactions were complex as well as mixed.
Because only one question focused on a specific interface
design feature (AppLens context view), we regard
commonality in participant responses indicative of the
highest-impact interface characteristics. We report here
on the strongest trends in opinion. Nearly half the
participants reacted positively to the aesthetics of
LaunchTile, and specifically to Blue. Six participants
appreciated the amount of information available through
the two zoom perspectives World and Home, and another
six thought that zooming between those perspectives was
one of the easiest aspects of the interface. Seven
participants felt comfortable using one hand to perform
the tasks, and eight felt they were able to effectively
navigate within LaunchTile.

Surprisingly, a majority (7) of participants had difficulty
with navigating by dragging within LaunchTile,
commenting most often that it was unintuitive. Six
participants struggled with the multi-modal nature of
Blue, unsure about its role in different contexts, especially
within applications. A related problem was that of
differentiating between the roles of the Home, Back, and
Blue buttons from within an application. The majority of
participants were tentative and had difficulty performing
tasks within the email application. Ultimately, participants
were evenly divided (3 vs. 3) about whether they would
choose to use LaunchTile for their own application
management, with 4 participants abstaining.

Reactions to AppLens were more consistent. Half the
participants commented that they liked the notification
view and the ability to access all nine notification tiles
within both Notification and Context views. Even though
two participants found nothing redeeming about Context
view, all others found the Context view useful at least
some of the time. Seven participants enjoyed application
navigation and found it easy to do, but participants
performed the majority of navigation using tapping rather
than gestures. Even so, participants were required to use
gestures to zoom out from Full zoom, and 2 participants
particularly liked the gestures. Five participants agreed
that the gestures were the most difficult aspect of the
interface, but disagreed on why, citing confusion over

 8

zoom-in vs. zoom-out gestures, difficulty performing the
ACTIVATE gesture, difficulty navigating with gestures, and
misrecognition of gestures. All participants found
AppLens both easy to learn and effective for navigating
among applications, all but one found one-handed use
comfortable, and six out of seven participants stated they
would prefer AppLens over their most familiar PDA
operating system.

Comparing the two interfaces, most participants
recognized the trade off between the number of
applications that could be viewed at once and the amount
of information conveyed for each, yet seven out of nine
participants thought AppLens provided better at-a-glance
value. Although nearly half the participants were
reluctant to compare the speed of information access
between the two interfaces due to the differing amounts of
information available, seven out of nine participants
thought AppLens supported faster data access.
Additionally, AppLens was considered easier to use (7
out of 9), and 8 out of 9 would prefer AppLens for use on
their own device. In response to our general question
about the utility of one-handed use, 7 participants thought
one-handed interaction would be useful at least some of
the time, with 3 of those participants preferring one-
handed to two-handed use in all situations. However 2
participants stated that they would never want to use a
PDA with one hand, regardless of the interface design.

DISCUSSION
While AppLens appeared to be the preferred design, we
must take care in assigning reasons for the preference.
First, AppLens is a simpler design and a shallower
prototype than LaunchTile. Its appeal may have been that
users felt proficient and better able to manage 9
applications (versus 36) with minimal use. Its simplicity
also made AppLens less prone to the performance
limitations of the target hardware, which noticeably
impacted LaunchTile zooming. However, more
experience with the two designs might have tipped the
scales in the other direction, as Bederson has pointed out
that even complex interfaces have the potential to be
highly satisfying after users have expended the effort to
become expert users [4]. A vocal minority of expert PDA
users who much preferred LaunchTile supported this
possibility, citing the large number of applications and
configurable layout as very attractive. Thus a different
participant population may have offered different
opinions. While we do not consider LaunchTile in this
class of expert interface, clearly 10 minutes is not
sufficient for users to become proficient with the variety
of interaction techniques supported by the interface.

Bederson hypothesizes that user satisfaction is related to
how well an interface supports “flow”, which correlates
inversely to the degree to which an interface gets in the
way of, or interrupts, user tasks [4]. Blue is an example

of a LaunchTile feature that interrupts flow: it performs
different functions in different contexts, requiring users to
keep track of the system state to predict the outcome of
tapping Blue. This type of functional overloading is a
well-known design issue, but is commonly used
nonetheless. For example, both the Microsoft and Apple
desktop media players use a single button for both Play
and Pause. Just as with LaunchTile, these designs
compromise simpler mappings in favor of a visually
simpler design. The difference, however, is that both
media players change the button icon to reflect the current
state (i.e., the function the button will perform when
pressed) so that users don’t have to remember the state or
deduce the state from less obvious cues. A similar
adaptation for Blue may reduce or even eliminate user
confusion in the LaunchTile design.

CONCLUSION
Based on our participants’ strong interest in one-handed
PDA use, and generally positive reactions to their
interaction experiences, we are convinced of the value of
research in one-handed, notification-based designs. We
have less evidence of the utility of design scalability.
Although we have demonstrated the feasibility of
transferring both interfaces to smartphones, we do not
know whether the designs support smartphone usage
scenarios. With respect to command gestures, we are
encouraged by the modest yet positively skewed
satisfaction ratings for gesture interaction as well as what
we consider very reasonable performance for both
directional gesture execution and navigation tasks. It’s
clear, however, that the introduction of two additional
diagonal gestures degrades performance and confuses
users. We will need to explore whether AppLens can be
an effective interface without these additional commands,
or whether a different mapping of commands to gestures
or on-screen cues can make the full set of gestures as
reliable and learnable as directional gestures seem to be.
Finally, we anticipate that extended usage studies with
wider populations will unearth more subtle usability
issues. With refinement, we hope a single design will
emerge to provide a consistent, flexible environment
designed for single-handed use.

ACKNOWLEDGMENTS
We appreciate François Guimbretière’s early suggestion
of considering the ergonomics of human thumbs, and
thank Aaron Clamage for his rapid efforts in porting
Piccolo.NET to small devices so we could build these
prototypes.

REFERENCES
1. Bederson, B. B., Meyer, J. and Good, L. Jazz: An

Extensible Zoomable User Interface Graphics Toolkit
in Java. Proc. UIST (2000), 171-180.

 9

2. Bederson, B. B. PhotoMesa: A Zoomable Image
Browser using Quantum Treemaps and Bubblemaps.
Proc. UIST, ACM Press (2001), 71-80.

17.Potter, R. L., Weldon, L. J. and Shneiderman, B.
Improving the accuracy of touch screens: an
experimental evaluation of three strategies. Proc. CHI,
ACM Press (1988), 27-32. 3. Bederson, B. B., Clamage, A., Czerwinski, M. and

Robertson, G. DateLens: A Fisheye Calendar Interface
for PDAs. ACM Trans. Comput.-Hum. Interact. 10, 4
(2003).

18.Rao, R. and Card, S. K. The table lens: merging
graphical and symbolic representations in an
interactive focus + context visualization for tabular
information. Proc. CHI, ACM Press (1994), 318-322. 4. Bederson, B. B. Interfaces for staying in the flow.

Ubiquity 5, 7 (2004). 19.Rekimoto, J. Tilting operations for small screen
interfaces. Proc. UIST, ACM Press (1996), 167-168. 5. Bederson, B. B., Grosjean, J. and Meyer, J. Toolkit

Design for Interactive Structured Graphics. IEEE
Trans. Soft-Eng. 30, 8 (2004), 535-546.

20.Robbins, D. C., Cutrell, E., Sarin, R. and Horvitz, E.
ZoneZoom: map navigation for smartphones with
recursive view segmentation. Proc. AVI, ACM Press
(2004), 231-234.

6. Blickenstorfer, C. H. Graffiti: Wow! Pen Computing
Magazine (1995), 30-31.

21.Robertson, G. G. and Mackinlay, J. D. The Document
Lens. Proc. UIST, ACM Press (1993), 101-108.

7. Buyukkokten, O., Garcia-Molina, H., Paepcke, A. and
Winograd, T. Power browser: efficient Web browsing
for PDAs. Proc. CHI, ACM Press (2000), 430-437. 22.Sarkar, M. and Brown, M. H. Graphical Fisheye

Views of Graphs. Proc. CHI, ACM Press (1992), 83-
91.

8. Furnas, G. W. Generalized fisheye views. Proc. CHI,
ACM Press (1986), 16-23.

23.Sazawal, V., Want, R. and Borriello, G. The
Unigesture Approach. Proc. Mobile HCI, Springer-
Verlag (2002), 256-270.

9. Guimbretiere, F., Stone, M. and Winograd, T. Fluid
interaction with high-resolution wall-size displays.
Proc. UIST, ACM Press (2001), 21-30.

24.Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill,
J., Dubs, S. and Roseman, M. Navigating
hierarchically clustered networks through fisheye and
full-zoom methods. ACM Trans. Comput.-Hum.
Interact. 3, 2 (1996), 162-188.

10.Hinckley, K., Pierce, J., Sinclair, M. and Horvitz, E.
Sensing techniques for mobile interaction. Proc. UIST,
ACM Press (2000), 91-100.

11.Hornbæk, K. and Frøkjær, E. Reading of electronic
documents: the usability of linear, fisheye, and
overview+detail interfaces. Proc. CHI, ACM Press
(2001), 293-300.

25.Strachan, S., Murray-Smith, R., Oakley, I. and
Angesleva, J. Dynamic Primitives for Gestural
Interaction. Proc. Mobile HCI, Springer Verlag (2004)

12.Jackito PDA. http://www.jackito-pda.com/.
26.Weberg, L., Torbj, Brange, r. and Hansson, s. W. A

piece of butter on the PDA display. Ext. Abstracts
CHI, ACM Press (2001), 435-436.

13.Long, C. A. Visual similarity of pen gestures. Proc.
CHI, ACM Press (2000), 360-367.

14.Lyons, K., Starner, T., Plaisted, D., Fusia, J., Lyons,
A., Drew, A. and Looney, E. W. Twiddler typing: one-
handed chording text entry for mobile phones. Proc.
CHI, ACM Press (2004), 671-678.

27.Wigdor, D. and Balakrishnan, R. TiltText: using tilt
for text input to mobile phones. Proc. UIST, ACM
Press (2003), 81-90.

28.Wobbrock, J. O., Forlizzi, J., Hudson, S. E. and
Myers, B. A. WebThumb: interaction techniques for
small-screen browsers. Proc. UIST, ACM Press
(2002), 205-208.

15.Perlin, K. Quikwriting: continuous stylus-based text
entry. Proc. UIST, ACM Press (1998), 215-216.

16.Piccolo.NET. http://www.cs.umd.edu/hcil/piccolo/.

 10

http://www.jackito-pda.com/
http://www.cs.umd.edu/hcil/piccolo/

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	THE ZOOM+FISHEYE APPROACH: APPLENS
	Generalized Data Access Using Tabular Fisheyes
	AppLens Notification
	Gesture-Based Cursor Navigation
	Command Gestures
	Using Command Gestures within AppLens

	THE ZOOM+PAN APPROACH: LAUNCHTILE
	Home Screen
	Panning Techniques
	Zooming out to the World View
	Zooming In to an Application
	Zoom Control
	Application-Level Interaction

	IMPLEMENTATION
	STUDIES
	APPLENS GESTURE STUDY
	Results
	Analysis

	APPLENS AND LAUNCHTILE USABILITY STUDY
	Results

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

