Visual Exploration Across Biomedical Databases
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Abstract—Though biomedical research often draws on knowl- mentioned ind. d may also have associations with other
edge from a wide variety of elds, few visualization methods PybMed documents that citeé as a reference, as well as
for biomedical data incorporate meaningful cross-database ex- associations to the PubMed documents tHaitself cites.

ploration. A new approach is offered for visualizing and explor- L .
ing a query-based subset of multiple heterogeneous biomedical Furthermore, each gerg2 G could have associations with

databases. Databases are modeled as an entity-relation graphthe proteins for whichg codes, or the DNA sequences in
containing nodes (database records) and links (relationships which g's code appears. Usually, the various types of records
between records). Users specify a keyword search string to jn these databases also have many attributes associated wit

retrieve an initial set of nodes, and then explore intra- and inter- them. For example, PubMed documents might be annotated
database links. Results are visualized with user-de ned semantic ; '

substrates to take advantage of the rich set of attributes usug  With the date of publication, authors, and general topidsilev
present in biomedical data. Comments from domain experts gene records could be annotated with the relevant species,
indicate that this visualization method is potentially advantageous location on chromosome, or function. This rich space of réco

for biomedical knowledge exploration. attributes is key in aiding understanding of the data.
Index Terms—Data exploration and discovery, bioinformatics, Given the huge amount of data at NCBI, and the large
information visualization number of databases, myriad variations of these assatsatio
are possible. To organize this data in a way useful for
|. INTRODUCTION knowledge exploration, note that NCBI's multiple datalsase

The amount of publicly available biomedical data has bafa" be abstracted as a massardity-relation graph In this

looned in the past several years with ever-improving tec raph, nodes correspond to individual knowledge points or

nology and computational methods. In addition to increaso(igabase records, such as documents, genes, proteins, and

digitization of biomedical publications, improved textmirg ther object types. Associations between database olgjauts

and natural language processing techniques allow for the &en bet'modeiletddas d(;reCtﬁ_?] or uptdlrecte?‘ Imk; |Inhthe graph,
traction of thousands of unique relationships from bioroali connecting related nodes. The entity-graph model hasdjlrea

text collections. This vast quantity of biomedical dataseres been applied to various document collections, includingeo

a unique domain-speci c challenge for interface designer@ th%.bmmﬁdmzl domam, afnd muchhresg?rcrtl_ has dszlt with
what are appropriate design choices that will help knowdaed@rovI INg a broad overview of research publications anadse

discovery and exploration within the biomedical domain? y visualizing the graph, typically usingfarce-directednode
: : " _lagyout scheme [17], or other schemes such as circular [12],
To ground our discussion, we focus on one of the moaatrix-based [6]. hierarchical [16], [35], [37], or layer§11],

important and largest collections of biomedical data free ?3]' [44] node layouts. These types of top-down visualiat

available on the Internet, that of the National Center for =’ ' ) S .
Biotechnology Information (NCBI). The NCBI maintains oveFImplnty the identi cation of concepts likeesearch frontg14].
However, our motivation lies not in discovering overall

30 public databases containing biomedical informationamfvt ds. but rather i lishing th dav technical
ious types, such as published medical documents (PubMet rl]< S’f I:I ral der n a(I:coer IS 'r:jgd_ € every aa/ te(I:< mcs
gene listings (Entrez Gene), protein listings (Entrez &t asks ot knowledge exploration and diSCovery undertaken by

and DNA sequence information (Entrez Sequence). It algbom?.d'clal scientists tand res?arphers.tStC|engsts mﬂgr d
stores and manages pairwise associations between recordg Particutar gene, protein, or topic want o nd Specic an

the databases according to the various types of content levant information that will aid in their research. As au#,
example, a particular documeiat listed in PubMed might when using N.CBIS databases, they begin with a speci ¢ query
be associated with all gendd from Entrez Gene that are or set of queries, and explore outward from the initial query
result. They might also cross-reference records from iplelti
This work was supported in part by the US National Sciencenflation databases. Our visualization tools are designed to aid this

under Grants EIA-00-91474, CCF-05-15241, and 11S-0713882well as the query-speci c exploration.
Of ce of Policy Development & Research of the Department of kiog and

Urban Development, Microsoft Research, and NVIDIA. Even though the NCBI databases form an implicit entity-
Department of Computer Science relation graph, the NCBI's current web interfaces offer no
Y Institute for Advanced Computer Studies option to explore multiple areas of the graph simultanepusl
Center for Automation Research . .
X Robert H. Smith School of Business Researchers explore the NCBI databases by retrieving &sing

University of Maryland, College Park, MD 20742 USA page of information at a time, essentially limiting them to
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as implemented in the Network Visualization by Semantic
Substrates (NVSS) tool. Figure 1a shows one such visualiza-
tion of a query about “cervical cancer” across three NCBI
databases. Unlike force-directed layouts, semantic stlst
rely mainly on node attributes for meaningful and reguladeo
placement into user-de ned regions. These regions allogvaus
to attach speci c semantics to node positions on-screed, an
enable a simple ltering paradigm based on node position.
In contrast to other methods, semantic substrates offegrexp
B ot ’ B - users ne-grained control over the placement of nodes and
their spatial meaning. Furthermore, different node lagout
can be effected by simply designing additional substrates,
allowing various views of the same data, and possibly leadin
to different insights about the data. Semantic substrates a
thus especially suited to the display of biomedical datal an
represent a drastic improvement over force-directed les/ou
LY used in similar situations, such as that in Figure 1b, as well
e as other node layout strategies. We used the NVSS tool to

Publication_Year PubMed
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visualize the results of several queries in NCBI's biomatlic
databases. On reviewing our work, domain experts indicated
that it shows a strong potential toward biomedical visulan
applications.

7 malignant neoplasm of bone

The paper proceeds as follows. Section Il contains a survey
i of related work in network visualization and its applicaiso
A within the biomedical domain. Next, Section Il describes
\ the data collection process, including our data model and
il ‘1 NGRS data collector design. In Section 1V, the concept of sensanti
LN AN W | substrates is further elaborated upon, and the controls and
(b) Force-directed methodology of designing and visualizing semantic subesra
Fig. 1: For large cross-database exploration, semantie s@e introduced. Section V provides several visualizatiohs
strates (a) provide a more useful node layout when comparggmple queries that demonstrate the power and breadth of
to a force-directed layout (b). In a semantic substrate esodsemantic substrates in cross-database exploration, \Beite
are placed into separate substrate regions based on ttrillion VI contains an evaluation of our visualization methbgs
values (here, source database) and are further organizkithwidomain experts. Finally, Section VII outlines further auven
each region using additional attributes. Link lters allome- of improvement and concluding remarks.
grained exploration.

N
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Il. RELATED WORK
Network visualization has a long and storied research

viewing a single node at a time. They must continuously clidkStory. In this section, we provide a brief survey of work
forward and backward to retrieve additional informationrfr N N€twork visualization, and some of its many applications
other NCBI databases. However, based on our interactioffthin the biomedical domain. For broader overviews, reer

with biomedical domain experts and the kinds of exploratoy Battista et al. [15], Herman et al. [24], and Suderman and

tasks they undertake, we believe that explicitly viewingl arf12/l€tt [43]-
exploring multiple nodes in parallel will lead to improvedrp
formance in exploration and discovery tasks. We provideta daA. Network Visualization Methods

by initially retrieving a query-based subset of nodes frofyce-directed layouts [17]. The basic idea behind the derc
one or multiple NCBI databases. Users then specityjuary girected layout is to model links as mechanical springs or
tree that de nes a data retrieval path between databases. B@fractive forces between nodes, and nodes as exhibiting
example, users interested in the role of genetics in alesiol repyisive forces. It thus tends to draw connected nodes to-
could use the data collector to perform a document keywogghther while separating unlinked nodes. This layout is fleto
search for “alcoholism” within medical literature and dise pecause it tends to reduce the number of link overlaps, and
databases, and retrieve links from the resulting hetere®es reyeals clusters that are not necessarily known by uses. Po
set of nodes to gene records in another database. ular alternatives to the force-directed layout includecaiar

To make use of the typically rich attribute space of biomedand radial [12], hierarchical [16], [35], [37], layered [1133],
cal data, we display graph nodes and links using a visualizat [44], and matrix-based [6] layouts. Circular layouts gextigr
technique known asser-de ned semantic substratgq, [40], place nodes around central pivot nodes, which allow for a



simple one-dimensional ordering of nodes around the circle Many systems have been developed for visualizing molec-
Hierarchical layouts group nodes into clusters, usuallyelda ular interactions and pathways within and across datasets,
on link strength. Layered layouts, often used with temporaicluding Cytoscape [38], Pathway Studio [36], Osprey [12]
placement strategies and citation networks, create leskls WeblinterViewer [22], ProViz [31], VisANT [28], Path-
nodes with each level's nodes sharing a common attributk, aBank [26], BiologicalNetworks [3], and most recently, Rrot
create an arrangement of nodes within each level to minimiaeens [29]. Most of these systems' visualizations are based
some perceived undesirable feature of network visuatingati specialized forms of the force-directed node-link layds@]|
such as link crossings. Matrix-based layouts offer a visuf], though most offer alternative network views such as
representation of an adjacency matrix, which avoids theenodircular, radial, hierarchical, or layered layouts. Bezauhey
and link occlusion problems of node-link methods. are designed for exploration, many of these systems offer
However, the main drawback of these methods when comquerying capabilities based on statistical attributes loé t
pared against semantic substrates is that they take a veepwork, or local topology, to draw attention to interegtin
limited or nonexistent consideration of node attributebjolr  parts of the network. Some (e.g., [12], [28]) also allow for
are generally prominent in biomedical datasets, and theref selective expansion of network nodes, rather than dispipyi
do not impart any meaning to nodes' spatial positions. lime entire network, and many are extensible via user plugins
particular, the force-directed, hierarchical, and mabased  There are also several visualization tools developed to aid
layouts are overly dependent on link attributes to deteemimnalysis of inter-species relationships, based on genamic
node positioning. Circular and layered visualizations enayphylogenetic data. Fung et al. [18] evaluates the effectssef
been used in limited ways to augment nodes' spatial positioimg two visualizations, based on matrices and bipartitplgsa
with some meaning, such as ordering or grouping nodes an DNA microarray data analysis. Shaw [39] presents another
terms of time, and so share some similarity with semantanalysis-based visualization technique where the siityilaf
substrates. However, they lack placement methods in tefmsgene order across species is displayed as a node-link diagra
multiple node attributes. In other words, they are limited tusing a force-directed layout. Also, a number of systems
one-dimensional node ordering. On the other hand, semantisualize phylogenetic networks, which represent spea®s
substrates can impart meaningful signi cance to nodestiapa nodes and ancestral relationships as edges. Huson [3@jpses
positions across multiple dimensions. one popular method for layout of phylogenetic networksezhll
Another drawback of these visualization methods is that &plitsTree, and Gambette and Huson [19] describe a number
the number of nodes and links grows, the resulting layoue$ algorithms for drawing split networks.
grow cluttered and dif cult to understand. To illustrateigF To visually explore relationships and connections between
ure 1b shows a force-directed layout of concepts related diseases and their associated genes, Goh et al. [21] getherat
breast carcinoma. Even though the concepts and relatipmsHivo complementary network projections they term the human
depicted in the gure vary widely, the large number of linkglisease network (HDN) and the disease gene network (DGN).
between nodes causes them to be tightly grouped and unrdadthe HDN, nodes are disorders and they are connected if
able. It is dif cult if not impossible to identify and expler they share a disease-causing gene, while in the DGN nodes
interesting relationships or patterns in the data. In @stir are genes and they are linked if they are associated with the
semantic substrates provide xed node positions based de neame disease. They use a force-directed layout to generate
attributes, which makes interesting nodes easy to idebjfy these two projections, and use color and size coding to impar
their attribute values. Also, powerful and interactive hwets information about the diseases and genes in question. They
of node and link ltering provide a simple means of makinginalyze the graph noting interesting statistical and togichl
sense of larger datasets. properties such as apparent clusters of diseases or gess=d B
Of course, it may be meaningful to incorporate some @ this work, Muhammed et al. [34] create and analyze a
these visualizations into semantic substrates to allowemdirug—target network, which visualizes associations betwee
compelling exploration of particular biomedical datas&@se drugs and the proteins that they target or affect.
Section VIl for a discussion of some of these potential A number of tools were developed speci cally for visualiz-
additions. ing large biological networks. Pajek [4] is a popular softeva
package for visualizing biomedical datasets such as DNA
interactions and genealogies, as well as a variety of otirgel
networks including citation networks. Adai et al. [1] prase
Because many biomedical concepts and relationships canebéarge graph layout algorithm that computes a Minimum
abstracted as networks (e.g., molecular interactionsalpeit  Spanning Tree (MST) of the network, and then uses the MST
pathways, regulatory networks, disease correlations)pymafor node layout based on an iterative force-directed atbori
visualization systems have been developed that cater to-expJsing this algorithm they created and explored a large prote
ration of speci ¢ knowledge domains or biological netwarkshomology network. Also, the knowledge visualization tool
These visualizations abstract some knowledge domain ad/dnsight [10] displays large networks of information sua$
network representation, and then use a corresponding netwdocuments or genomic data as a 3D mountainous landscape,
visualization method to display the data. Generally, tly@lda where peaks correspond to important data points. Boyack et
method is chosen based on the general network topologyadf [9] used VxInsight to study how genes, protein and papers
the underlying knowledge domain. related to melanoma are interconnected via co-occurrence

B. Biomedical Visualizations



patterns of Medical Subject Heading (MeSH) terms. They ge

erated a manually-annotated Paper-Gene-Protein maprépa| Tane my P Bt

from MEDLINE, genes from the Entrez Gene database, al

proteins from UniProt) using a force-directed layout altfon g C il 1
.' UniGene Chromasomes

to see prominent co-occurrence relationships. Their Vlizaa

tion was used to nd “bursty” genes related to melanom

research, indicating possible correlations. PathwayiS{ia®], nuiae G- - S

Osprey [12], ProViz [31], and VisANT [28] also specialize in

large networks. Additional commonly-used tools for biomed P.in URiSTS HomaleGene

cal network visualization include the Prefuse toolkit [28]d

GraphViz [20]. Pl o Sitilighu re CRAIR 30S
Several visual tools have been created for explorir

databases of biomedical literature and the mined semar .

relationships found within. Arrowsmith [42] is a textual We #

based tool that supports the discovery of relationshipsdet = _ ol

two sets of literature in MEDLINE, a database of life scienc S0 g ains Domains

and biomedical information. Arrowsmith lets users look fo

items or concepts that may be common between two d

tinct sets of articles, but the presentation of query rasul

is limited to its text interface. In a similar vein, the iHOP

system [27] attempts to mine gene and protein cooccurrenddd- 2: The largest of NCBI's databases, where each node

through manual user speci cation of sentences of intereshf Ccorresponds to a database, and node color representing the

PubMed abstracts. Aggregated results are displayed asd@iabase’s size. Links between databases are also shown.

entity-relation graph of genes, but again with no regardeithe Associations between databases are numerous, and beeng abl

gene's attribute values. In other words, node layout is lpureto explore these relationships is key to understanding fdaa

link-based and ignores the intrinsic qualities of each geri@ese databases. (from http://www.ncbi.nlm.nih.govébate/)

which if used would provide additional exploratory value.

CiteSpace [13] is a system for detecting and visualizingdse

and changes in scienti ¢ disciplines and their correspogdi

literature over time, based on clusters of important keylsor

To explore the literature, two complementary visualizasio

P Journals

information. Also, the set of attributes varies accordimmg t
the type of node. For example, PubMed document nodes
include attributes for the document's title, authors, yeér

?)r lication, and keywords, while Gene nodes have attribute

views. CiteSpace uses a force-directed layout to prowdef& gene name, genus and species name, and chromosome

high level overview of important or seminal works. Boden;_ _*. .
gh level overview of important or seminal works. Bode location, among others. To ensure meaningful node placemen

reider and McCray [8] examine several network V|sual|zrat|oin semantic substrate regions, several node attributes tha

methods to explore semantic relationships from the Uni epeé%resent semantic information should be selected frorh eac

Medical Language System, a database of medical concepte. Fortunately, each node type in the NCBI graph has many

and terminology gathered from many medical VOCabuI"’mes'attributes and it was therefore easy to settle on apprapriat

attributes for node layout.

- ] . While database items correspond to nodes of the entity-
To facilitate exploration of the NCBI databases, we designge|ation graph, database associations correspond todinke

a data collector to retrieve a small subset of the entire dajgaph. Each link has pointers to the two nodes that it joins
collection, based on an initial keyword query and couplegs well as a type classi cation, such as “document citation”

with subsequent node and link expansion. In this section, We«content similarity”. In addition, the graph has seveliak
describe our entity-relation graph model in more detailva$ properties that make it more dif cult to visualize:
as the Web services available through NCBI's website, both

I1l. DATA RETRIEVAL

of which in uenced our nal data collector design. 1) Nodes may be connected by multiple links.
2) Links may be weighted or unweighted.
A. Database Model 3) Links may be directed or undirected.

Figure 2 shows the largest of NCBI's databases, along wilor example, suppose two medical report documehtsl,
inter-database associations. As mentioned previoustizgera concerning breast cancer appear in the PubMed datablase.
than keeping these databases distinct within our datactisie may cite d,, so after mapping to the graph, a “document
and visualizations, we abstract NCBI's databases into aitation” link would point fromd; to d,. Likewise, becausd;
entity-relation graph In this graph, NCBI database itemsandd, have similar content, an undirected “content similarity”
such as documents, genes, and proteins correspond to ndihés with weight of 0.9, might joind; andd,. It is therefore
of the graph. Nodes have unique identi ers as well as mamtal to incorporate a method of distinguishing or Iteritigks
other attribute values corresponding to each node's aat®ati based on link attributes.


http://www.ncbi.nlm.nih.gov/Database/

[ Step 1: Search

databases. To retrieve intra-database links, users cé&nalin

searh  [Ohib =] P facanotend database to itself. For example, in Figure 3, the user has
UnitSeachFesubs [on  lmiliks [on = speci ed an initial query string of “alcoholism”, and it

database of OMIM. The corresponding query tree species

[5ten 2 Bukd Netwok that links from OMIM to the PubMed and Gene databases

oot Resource = S should next be retrieved, as well as links from the resulting

2l Loa e set of PubMed documents into the Gene database. This query

tree will cause the data collector to retrieve links into the
Gene database from multiple sources, allowing for poténtia
Remove | interesting visualizations that make it easy to nd the gene
most linked with alcoholism.

Fig. 3: The main interface of our data collector. Users dyeci The data collector proceeds by executing an eSearch query
a keyword query in the search entry eld, and a query trd8 the database corresponding to the root node of the query
representing the path of data retrieval. The data colletten tree. It then gathers data links and nodes by traversing the
traverses the query tree, collecting nodes and links albeg free and executing corresponding eLink queries. Finalgen
retrieval path. Here, “alcoholism” will be the initial quein attributes for all collected nodes are retrieved using fheteh
the OMIM database, and links into the Gene and PubMédlity. The data collector generates two tab-delimitext ties
databases will be collected. as output corresponding to node data and link data.
Because our visualization method (see Section V) relies
heavily on node attributes for node placement, we designed o

B. Data Collection data collector to allow users a exible de nition of requide

To retrieve data, we use the Entrez Programming Ut”f’;_\ttribute_s Without_interacting with _the data cqllectortsde. We
ties (eUtils}. eUtils is a programming interface to the En__store a list of attributes to be retrieved outside of thevsafe

. in_an external XML attribute description le. Each attrileut
trez Global Query Cross-Database Search System outside 0 he XML le is composed of attribute name, attribute type.,

NCBI's regular Web browser-based query interface. We udd . e :
the following eUtils services in our data collector: optional lter string, an indicator of whether the attrileutan

) . have multiple values (e.g., author names), and optionalezen

1 eSegrch which executes a keyword search query In sy rules for speci ¢ attribute values. These conversioles
speci ed database, returning a set of matching reco{flye sometimes necessary to resolve Entrez database eld
'ds, and rglevancg scores. . inconsistencies. For example, Gene records corresporiding

2) eLink which retrieves links from a given set of recorq,;,an genes have attributes for the chromosome on which
ids to record ids from another database. the gene is found, which can be either numeric (e.g., 9) or

3) eFetch which retrieves all record attribute values for % ominal (e.g., X, Y). Using a conversion rule, we mapped

given record id. X and Y to chromosome numbers 23 and 24 respectively, to
Responses are retrieved in an XML format, and thus are eagiw for more meaningful Gene node positioning.

to parse with any standard software. In addition to eUtils,

NCBI provides a Web service that offers access to the Entrez ) S

Utilities via the Simple Object Access Protocol (SOAP). w®- Data Retrieval Limitations

developed our data collector in C# .NET using this service. NCBI enforces rate limits for programs using the XML
eUltils interface. Programs using the interface are limitec

C. Data Collector Design single request every 3 seconds. In addition, the systemsego

. . _limits to avoid particularly time-consuming queries. If aagy
As we want our to_ols to be used by as W'de an aUdlen%%ekes longer than 30 seconds to complete, the query is hcel
as possible, we designed our data collection tools to WOiAd no results are returned. These limits create a challiemge

with any NCBI database that users might want to qUelY.teractive retrieval of query result nodes and links, asdhta

Figure 3 depicts our data collector's user interface. Ithdes e
. . callector must obey these limits to ensure a full set of query
user queries of NCBI databases by making use of a keywor . . '
results. They also prevent the timely retrieval of potditia

_search que_rycoupled with aquery trgg _The search query interesting nodes and links between the results of indegr@nd
is a collection of keywords and an initial database (e.g., |n

Figure 3, OMIM) in which to search. The query tree is aeyword queries, or independent clusters of nodes.

speci cation of the requested links between the searchltesu Our initial versions of the data collector ex_pe_rlenced_t-_lme
L . outs and service disconnects due to these limits, resuiting
and entities in other databases. This tree represents thepa .

data retrieval that will be taken by the data collector. Eactie !Ecg Eﬁliﬁsﬁgg'sj\;ggugzzz rsgrlfnltbsi.n;?ioivzlfd tﬂgse S;?g:?nm
in the tree corresponds to one of NCBI's databases, with t ' query 9

root node corresponding to the initial search query's b gEt\?:rue:IesirI;erllgrg , uaer:r(ijesreussuilr: ﬂfge;;mr;g. uve\zlre ?elzi(t) sjﬂtarc
Links between nodes in the query tree represent inter-datab. . plerq ; 9 query ' .
: . ; ing different node attributes in each query, such as the, titl
links that will be collected between records from different o . :

body text, or clinical synopsis attributes. Thus, we endinat

Lhitp://eutils.nchi.nlm.nih.gov/ each individual query was completed within the requiredetim



http://eutils.ncbi.nlm.nih.gov/

limit, and still collected enough data to be useful. Due tsth their genetic locus, with the X-position corresponding he t
multiple independent queries, we often retrieved redunhdagene's chromosome, and the Y-position corresponding to the
node records, which were removed from the nal result.  gene's chromosome band.

An alternative to working within NCBI's rate limits is to  Semantic substrates are also useful for cross-database ex-
download a copy of NCBI's public databases and simply quepforation because they provide a natural way to group nodes
the local copy. However, as the NCBI's biomedical databasesthe same type together. Each database can be represented
continue to grow and be augmented with additional semaniica substrate by its own region (e.g., having separate megio
information, the feasibility of storing and querying a lbcapy for PubMed, Gene, Protein, OMIM, and Taxonomy). As a
rapidly diminishes, due to size and synchronization issues result, it is easy to distinguish intra-database links frioer-
database links by visual inspection. Segregating nodes int
distinct regions also simpli es the user interaction neszey
to Iter nodes and links to a selected subset of interest,

Typical graph visualizations within the biomedical domaigvhich is important when visualizing large databases witmyna
use force-directed node layouts [17]. However, as statedelationships between nodes. Links can be identied using
earlier, force-directed layouts make little or no use of @odhe attribute values of the nodes that they connect, which
attributes for node positioning, and thus overlook an incan be determined easily using the nodes' positions, and can
portant dimension of semantic information. Furthermote, be Itered based on both node and link attribute values. For
can be difcult to visually distinguish nodes of differentexample, users might nd a cluster of interesting links bedw
types using force-directed layouts, as demonstrated by trtain PubMed nodes and Gene nodes, where the PubMed
“hairball” visualization in Figure 1b. Even though node @ol nodes' publication date was after 1980 and the Gene locus
shape, or size can be used to differentiate node attribuigss on chromosomes 12 and 13.

(in Figure 1b, color is used), the emphasis on placementAn additional benet of using semantic substrates is that
using links causes a cluttered and confusing display, esen they provide a natural and powerful way of creating multiple
some small to moderately-sized networks. This clutterrede views of the same dataset. To do so, users can simply create
to the network's links in that it is dif cult to follow links another semantic substrate by choosing a different region
from source to destination. As a result, force-directedidy |ayout, or selecting different node attributes and valwease

tend to hamper the type of high-dimensional, cross-dabdsr region placement and positioning. Having multiple view
exploration that we seek. of the same data is especially useful for visualizing thgear

Therefore, instead of using link strength (as force-dedct high-dimensional datasets used by the biomedical communit
layouts do), we position nodes withsemantic substrate®\ where new and interesting visualizations can be obtained by
semantic substrate consists of a collection of non-ovpitap using a different subset of attributes and values. The$erdift
regions within which nodes are placed and positioned bas@gualizations can afford different insights into the data
on node type and other node attributes. To create a semanticler consideration. We used the implementation of semanti
substrate, users create a set of regions, and select nodesabstrates calleMetwork Visualization by Semantic Substrates
tributes and values that determine into which region eacteno(NVSS).
is placed. For example, a natural way to segregate nodes intqVe now provide an overview of the semantic substrate
regions would be to place all PubMed nodes in a single regiafesign process, and the visualization controls available i
all Gene nodes in another region, and so on for each databmisess.
under consideration. Next, for each substrate region,suser
select additional node attributes and values to determave h o .
nodes are positioned within the region, such as positioniAy D€signing a Semantic Substrate
PubMed nodes based on their publication date, with olderDesigning a substrate in NVSS amounts to deciding the
publication dates in the left portion of the region, and new&umber of substrate regions, their positions on the disglagt
dates to the right. which attributes to use for node placement into and within

Rather than relying on links between nodes, semantic sukgions. In general, the process of designing satisfying an
strates provide a consistent node layout, mostly indepeindeseful substrates is an iterative procedure. Often it id har
of link data. While this may result in more link overlapsfo tell how useful a given substrate will be for exploration
semantic substrates preserve relationships among nodke ofprior to loading and exploring the data. In addition, the @od
same type. Thus, if users already have ideas or expectatiptecement method (i.e., along the regions' X-axis, Y-axis,
of the types of patterns in their data (as is usually the caeth) may affect the visualization's usefulness.
with biomedical data), placing nodes based on known atiibu Fortunately, NVSS simpli es the creation of multiple se-
values provides a useful visual grounding for further data emantic substrates using a built-in substrate designely ful
ploration. For example, the PubMed region layout mentionetbscribed by Aris and Shneiderman [2] and shown in Fig-
above, where PubMed nodes are positioned by publicatiare 4. Users draw substrate regions in the right pane of
date, allows users to quickly nd the most recent articlethe designer, and then set properties for each region in the
covering their topic of interest, rather than having to hioxt left pane. For each region, the most important settings are
them on the screen. As another example, Gene nodes mitjldse which determine the nodes that will be placed in the
be positioned within a gridded substrate region accordog tegion, set using the “Attribute” and “Attribute value” ds.

IV. SEMANTIC SUBSTRATES
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Fig. 4: The NVSS substrate designer. Users draw regionsin th
right pane. Each region's node grouping and display progeert
can be set in the left pane.

In Figure 4, the user has created six regions, corresportding
nodes of type Gene (the central selected region), Homotggen

OMIM, PubMed, Protein, and Taxonomy. For each region TR T
the node positioning within the region is further set usihg t Cimea T I . E——

. . Comment 2 = =
uplacement methodn eld, Wh'Ch OpenS another dla|Og box cnmpa?::;::::z s asasaas :A .......................
with node positioning options. In the gure, for the central el cinc tra PR (S — s g
Gene region, the “GridPlot XY” method was chosen, with "

- JOURNAL ARTICLE 444 aaaaa
the gene chromosome number used a|0ng the X-axis and t ,aum,t,,‘i:,u ....... AAMAMAL AALLAAS ALLAALL ALAAASA ALAALAA sisiiss
chromosome band used along the Y-axis. Apart from nod e e
placement and positioning, various display propertiesefrh Publication-Year
region can be set, including region labels, node colors, and ©
region |l colors. Fig. 5: Three variants of a region with PubMed nodes using

To illustrate the substrate design process and show ttiiéferent node positioning attributes: (a) Publicatiorayalong
dramatic difference when using different node placement aiX-axis with uniform binning; (b) Publication year along Y-
positioning attributes, we now describe the process we faxis with custom binning and size-coding for node indegree;
lowed to create a substrate region containing PubMed nodgs. Publication year along X-axis and publication type glon
These nodes have several attributes which could be useftdixis.
for node placement, such as authors, publication dates, and
publication types. They were also of particular interestl an
a challenge to visualize due to the relatively large numbépded each node to indicate the node's indegree, to impart
of PubMed results in our queries and their somewhat skew8@me measure of the node's importance to the query as
distribution of publication dates. a whole. Note that choosing appropriate custom bin sizes

Figure 5 contains three variants of a substrate region cdigauires prior knowledge about the distribution of atttéou
taining the same data, namely PubMed nodes from a qu&Ajues, so proper bin lengths can be set only after an initial
about “cervical cancer”. Figure 5a is our initial visualize visualization. These dif culties can also be somewhat mit-
of these nodes, using the publication year attribute foouay igated by integrating additional statistical displayscisias
along the X-axis and with uniform attribute binning. As caritribute value histograms, into the substrate desigrsewel
be seen, the right portion of the region is overcrowded withS incorporating scrolling and zooming features within the
nodes, indicating that most documents in the query resdigualization itself to view compact regions more clos&hie
were published within the past ten years. Another probleRian to extend NVSS to include these features.
with the initial layout, of which we were not aware before For a third example layout, shown in Figure 5c, we created
visualizing the data, is the large gap in PubMed resulfs2D layout using two attributes: publication year alongXae
between 1948 and 1980. This layout wastes screen space @K§: and publication type along the Y-axis. This layoubwat
apart from distinguishing the 1948 publication, provides nusers to nd interesting groups of publications by both type
useful information about the visualized data. and year simultaneously, and provides a quick overview of

To remedy these problems, we used a different layodf€ types of publications relevant to the query of interést.
shown in Figure 5b. In particular, we used the Y-axis foRlSO demonstrates how using a different semantic substzate
node placement and used custom (i.e., non-uniform) birssiZzZovide a different means of exploring the same data.
to group nodes. This layout causes nodes to be spaced more o
evenly, and allow users to more easily distinguish indiaidu B- Visualization Controls
nodes, which is important for useful data exploration espe-After designing substrates, users proceed to visualizie the
cially in combination with link visualizations. We also siz data using NVSS's visualization module, which has a variety



are selected in the display, accessible by clicking the ‘@&Nod
Details” tab at the top. Furthermore, by clicking on a node
in the visualization, users can open a Web browser to display
a URL associated with the node, which for our datasets and
queries, was the NCBI webpage corresponding to that node.
This feature was especially important to our users, as otar da
collector was unable to retrieve all the attributes in which
biomedical researchers were interested due to databasssacc
limitations.

V. SAMPLE VISUALIZATIONS

Based on our interviews with domain experts (see Sec-
tion VI), we created several visualizations of sample cpseri
that might interest typical biomedical researchers, based
around diseases being actively researched at NCBI, the Na-
tional Institutes of Health (NIH), and other biomedical tms.

Our queries encompassed six NCBI Entrez databases, namely
PubMed, OMIM, Gene, Protein, Homologene, and Taxonomy.

In collecting data from these databases, we found that the
set of attributes available through the Entrez system wiaiera
limited in size and breadth. As a result, the node placement
and positioning attributes we used for demonstration psgpo
would be of somewhat limited use for the highly specic
qgueries of biomedical research. NCBI's internal databases
hidden from the Web, contain a much richer set of attributes,
and it is these attributes that would make for even more
interesting visualizations using semantic substratesictwh

Fig. 6: Visualization and ltering controls ava|l<_';1b|e in NB&. thrive on rich attribute spaces. See Section VI for a desorip
Above, users select colors for substrate regions, nodes, Y some of these attributes and their potential use

links. Check boxes also allow users to selectively display The queries and their visualizations are detailed below.
subsets of links based on source and destination regioowBel

users perform additional link Itering based on additional _
source and destination node attributes, using checkbaxest Hypertension
enable lters, and two-way sliders to select attribute ealu Our rst query was of the general form: “What are the
ranges. most signi cant publications, genes, and diseases related
hypertension?” To execute this query, we performed a kegiwor
search in the OMIM database for “hypertension”, and retiev
of additional controls. Here we describe these controls; Wieks from the resulting set of OMIM nodes to the Gene and
will provide complete visualization examples in subsequeRubMed databases. We also retrieved links from the Gene
sections. Figure 6 shows the control panel of NVSS's visuatodes to PubMed nodes, as well as some similarity links
ization module. In the top portion, users can customize nodeetween PubMed records. For the hypertension query, we
region, and link colors. The numbers next to each region andllected a total of 433 nodes, including 357 PubMed regords
link type represent the number of nodes in regions and link$ Gene records, and 31 OMIM entries, in addition to 440
between regions, respectively. In addition, users canrobntlinks.
the visibility of links using the link check boxes. In the g Figure 7 shows one visualization of the query results, using
the user has chosen to show the 6 links from Gene nodesatsubstrate with separate regions for each database. Tiposi
Homologene nodes, and the 103 links from Gene nodesrodes within regions, we ordered PubMed and OMIM nodes
Protein nodes. by publication year and modi cation year, respectively,ileh
The lower portion contains additional link Iters basedfor Gene nodes, we used a 2D layout using each node's
on source and destination node attributes. These Iters gBenus and Chromosome Number attributes. In the gure, the
vital when exploring very large databases with many nodimks have been ltered to only those PubMed documents
relationships, as are often present in the biomedical domapublished in 2002, using NVSS's slider bar lIters. Notice
to ensure a meaningful and useful visualization. In the egurthat the collection of PubMed documents within that time
three attribute value lters are activated, including linkom range are linked from all three databases, and most aredinke
those Gene nodes with chromosome number between 7420n a single source only. The gure exempli es the need
and genus Homo or Mus, as well as a lter for OMIM nodegor visual cross-database exploration, in that this phesmam
with modi cation dates between 2001 and 2009. In addition tikkely resulted from our not knowing the correct keywords
the above controls, NVSS provides node details when nodesuse to return all relevant results. This is a typical peotl



Fig. 7: Results of a cross-database query about hypertenSiene—PubMed, OMIM—PubMed, and PubMed—PubMed links are
shown where the link's target publication was published @2 Notice that links to the relevant publications are tecatl
across multiple sources and would be dif cult to nd usingmuisual cross-database exploration methods.

with strict keyword searches, even those performed by domalate (Y-axis) and node indegree (X-axis), which allow visua
experts. To retrieve the equivalent set of results in ati@uil determination of PubMed nodes' recency of publication and
textual exploration interface would require repeatingdiiery importance in terms of citation by Gene nodes. We collected
several times in multiple databases, and manually merge tn¢otal of 80 OMIM nodes (20 per keyword search), 98 Gene
results. Using semantic substrates, we can easily perfogset nodes, and 1317 PubMed nodes, and a total of 2034 links.
cross-database searches and visually display query sesult We can see that several clusters of genes collected through

an intuitive and useful manner. links from OMIM can be found in the Gene region, which
may be dif cult to nd using non-visual search methods. Also
B. Mental Disorders when applying ltering to show links from OMIM nodes to

Our next query was gene-centric and involved nding gené‘sentrosomal Gene nodes (i.e., those genes With middle band
implicated in several mental disorders, namely anxiety, dBUMDers), we observe that these genes have links from a large
pression, addiction, and schizophrenia, as well as puizits number of OMIM nodes related to all four queried mental
related to these genes. For this query, we used the safisorders. This may indicate that the genes under considera
databases as used in our hypertension query (i.e., omiRpve strong ties to all these disorders. Upon examining the
Gene, and PubMed). However, we performed four Separﬁlgijed nodes, obtained through links from the Gene nodes
keyword searches in OMIM, and retrieved links from eacfPut not shown), we see that research into genes related to

separate search to the Gene database. We then retrieved I{iR gueried mental disorders has a rich history. In addition
to PubMed from the Gene result nodes. the PubMed nodes with large indegree (i.e., those nodes with

Figure 8 shows our visualization. Even though we usedarge in uence on the Gene nodes as measured by number
the same databases as before, our substrate is subsyantllinks from Gene nodes) readily stand out, allowing quick
different, demonstrating the ease of creating multiplengie detérmination of the most relevant publications relatethto
of the same data. The four OMIM keyword search resul@enes of interest. As this example shows, NVSS's interactiv
are placed into different regions, labeled Anxiety, Depims, [ters allow the exploration of data in a variety of useful y&
Addiction, and Schizophrenia, respectively, which previa )
simple means of visually distinguishing OMIM nodes from th&- Breast Carcinoma
different keyword searches. Gene and PubMed nodes again aror our third query, we searched for cross-species genetic
given their own substrate regions. For OMIM node positignin information and publications related to breast carcinoAm.
we used database identi ers, while Gene nodes are positiorigitial keyword search for “breast carcinoma” was perfodne
using chromosome number (Y-axis) and chromosome baimdthe Homologene database to retrieve cross-species- infor
(X-axis). PubMed nodes are positioned using publicationation. Links to the Gene, OMIM, Taxonomy, and PubMed
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Fig. 8: Results from a query about genes implicated in séveemtal disorders. Multiple OMIM keyword searches allow a
visual query intersection of Gene nodes. Also, link statistrom Gene nodes to PubMed nodes are used to nd the most
prevalent publications related to these genes.

databases were then retrieved. We also retrieved additioapproximate genetic locus. As before, nding relevant OMIM
links from the returned OMIM nodes to PubMed nodes. lantries and PubMed documents becomes simple when using
total, we retrieved 14 Homologene, 15 Taxonomy, 26 OMIMhe indegree for node layout in their respective regiond. Al
129 Gene, and 587 PubMed nodes, along with 908 links. these visual indications can allow domain experts to ndfuke

Figure 9 shows our query results in a substrate with vétarting points for more in-depth exploration.
regions, with each region corresponding to a different kzte
accessed in our query. For Homologene node positionifg, Obesity
we chose a taxonomy ID associated with the node, WhiChOur na| examp|e query for re|evant entries about “Obe_
indicated its primary species association. Of course, eade sjty” also used the Protein database to nd relevant pratein
had several such associations, as evidenced by the links frg, aqdition to the previously-used PubMed, Gene, OMIM,
each Homologene node to multiple Taxonomy nodes. Wemologene, and Taxonomy databases. We began with two
divided the Taxonomy region based on the species division l’Sword searches for “obesity” in the Gene and PubMed
speci ed in the Taxonomy database. For the OMIM regiomyatabases. Next, we retrieved links from the Gene nodetsesul
both the modication date (Y-axis) and indegree (X-axisjp nodes in the OMIM, Homologene, Protein, and PubMed
were used for node positioning. Finally, for the PubMed arghtabases. Finally, we retrieved links from the Homologene
Gene regions, we used same the node layouts as those ini@g(iits to Taxonomy database nodes. A total of 200 PubMed,
previous query about mental disorders. 27 Gene, 18 OMIM, 7 Homologene, 12 Taxonomy, and 103
By interactively ltering links, we quickly found a Homolo- Protein nodes were retrieved, and 425 links.
gene node with links to many Taxonomy nodes (highlighted Figure 10 contains our obesity query visualization. Forenod
in the gure). In other words, we found a gene with manyositioning in the Protein region, we used the correspandin
cross-species links that was especially relevant to bregst protein's length, which served as a rough clustering of the
cinoma. The node's details are shown in NVSS's right pangdrotein nodes. For the remaining regions we used the same
which indicates the underlying gene symbol as BCAS2 armdtributes as in the previous visualization. In the guree w
corresponding title “breast carcinoma ampli ed sequente 2ltered the links to show only those from Gene nodes to
Also note that the Homologene node in question has links tdaotein and OMIM nodes, as well as links from Homologene
tight cluster of Gene nodes, which may indicate the disesaseodes to Taxonomy nodes. In doing so, we observe that several
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Fig. 9: Results from our query on breast carcinoma. The iggtéd Homologene entry, corresponding to the BCAS2 cwveskr
gene, contains links to a wide variety of Gene and Taxonondespindicating its importance to breast carcinoma.

Fig. 10: A substrate showing results from our obesity qu&everal interesting patterns emerge, such as several Gales n
with links to multiple OMIM nodes or multiple Protein nodeusters.

Gene nodes have links to multiple OMIM nodes, indicatingpecialists from the National Library of Medicine. These
their possible connection with several diseases or medicakearchers have expertise in a variety of areas, including
conditions related to obesity. In addition, some Gene node®medical informatics, biomedical ontologies, machiearh-
have links to multiple clusters of Protein nodes, which mang, and text analysis. Most also hold medical degrees and
indicate their importance to the query result. With diffetre PhDs in medical informatics and computer science, and have
node ltering, domain experts can explore the query restats on average 15 years of experience in their respective elds.

discover additional details useful in their research. These researchers mainly used the PubMed, Gene, and

OMIM databases for their work, in addition to NCBI's various
V1. EXPERTEVALUATION other databases. In general, they were dissatis ed with the
To judge the effectiveness of our visualization methodsurrent state of affairs in bioinformatics visualizatiorespe-
using semantic substrates, we met with ten bioinformaticglly related to visualization of manually or automatlgal
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extracted semantic relationships among PubMed documentsWe visualized the query results in NVSS, using one region
as well as the hierarchical relationships of the MeSH aridr each of the PubMed, Gene, and OMIM data. Figure 11 is
GO ontologies. For example, text mining methods on a largme such visualization of the brain development query. The
collection of PubMed documents, Gene records, and OMIMure shows one particular OMIM node, corresponding to
articles might yield relationships such as “gene X is catedl schizophrenia, and all the Gene and PubMed records that it
with disease Y”. They had tried using off-the-shelf tool€lsu references. The Gene records are organized by chromosome
as Prefuse [23] and GraphViz [20] to visualize these refationumber, PubMed documents are ordered by year of publica-
ships, but found them to be inadequate for exploratory puren, and OMIM entries by the last date of modi cation.
poses, mainly due to “insuf cient exibility” of the data su- The NLM team commented that the referenced genes were
alization and their “limited navigation paradigms”. Theesh likely implicated in or related to schizophrenia. They likihat
number of semantic relationships extracted from PubMekey were able to see, at a glance, what the most important
documents — in the hundreds of thousands — was alsogenes and documents related to schizophrenia were. They als
limiting factor, as most visualizations lost their effeeiness suggested that using more attributes of each node type would
when the number of visualized relationships exceeded theake it easier to answer the query. In particular, “centneesio
hundreds. Also, these tools generally did not allow intégre. genes” refers to those genes with a central physical lagatio
of data from multiple sources, which severely limited theion their respective chromosomes — in other words, with a
utility. Unlike the existing visualizations, semantic stitates’ middle band number. As evidenced by gures 8, 9, and 10,
powerful ltering capabilities are better-suited for shing gene chromosome and band numbers serve as natural and
interesting subsets of large, complicated networks. useful attributes for node positioning within semantic studite

We arranged a 1.5 hour combined presentation and foaegjions. To improve the visualization of this query's respl
group discussion with the team of experts. A half-hour wage could position Gene nodes using chromosome number
dedicated to a presentation of our exploration methodologynd chromosome band number, as we had done earlier. This
using semantic substrates, after which we asked for comodi ed layout would allow users to quickly nd centrosomal
ments and feedback from the experts for the remaining hogenes at a glance, by examining the nodes' spatial positions
We asked the experts how biologists seeking informatiamithin the region.
from the NLM or NCBI databases would normally explore To improve the PubMed and OMIM regions, the researchers
their vast collections of data. They commented that detaileuggested additional node attributes to use. For PubMed
literature and topical surveys are normally carried out byodes, genotypic and phenotypic associations might make
the NLM's expert librarians, who maintain their own privatefor interesting visual classi cations. Also, for OMIM node
indexing systems, separate from the public interfacedablai rather than using modi cation date for node positioninggyth
through the Internet. They also mentioned that typical kaylv suggested using the class of disease connected with the OMIM
searches using the NCBI's Web interfaces would not return @ntry. The researchers commented that this richer set aé nod
exhaustive collection of relevant literature and inforimat as  attributes would greatly enhance the visualization and enak
query results are heavily dependent on the exact terms usedmmediately useful for answering a variety of queries.
and do not adequately take synonyms and other relationshipsfortunately, these attributes, while present in intéh@Bl
into account. They were excited that our approach augmeniggtabases, were not accessible through the NCBI's Web in-
an initial keyword search with link information that effaely terfaces. However, if available, these attributes couledmly
expands the results of a given query in possibly interestingtegrated into semantic substrate designs and would Haluse
ways. In other words, they believed that it is not strictlfor exploring query results.
necessary to know all the synonyms or related terms forThe NLM researchers offered several suggestions for mak-
a given keyword query, as these synonyms are implicit iAg cross-database exploration in NVSS more dynamic. In par
the link relationships found among the query results. Thepular, they wanted ways to re ne their initial query basexl
further commented that semantic substrates offer a “usefidditional keywords found in the set of results, or seledyiv
visual metaphor” for exploring ever-expanding collecBoof  |ter or expand subsets of the graph. Also, the NLM team
semantic relationships in a scalable way. The researchgiggested that it would be useful to dynamically add more
also mentioned that “pulling in multiple databases for srossubstrate regions, and reposition regions if the currelssate
searching” was the correct way to explore large collectiohs |ayout was not found to be useful. We plan to integrate these

biomedical data. improvements into future versions of NVSS.
To evaluate our methods in the context of speci ¢ technical

gueries, we used our data collector to prepare sample query
results involving the PubMed, Gene, and OMIM databases. We
retrieved data based on several queries from the TREC 200%arting from textual query result lists like those at NCBI's
Genomics Protocol [25], three of which were as follows:  website, semantic substrates offer a novel way to browse and
1) What centrosomal genes are implicated in diseasesexplore biomedical data across multiple databases. Thigdr
brain development? ing would be further enhanced by incorporating dynamic guer
2) What is the genetic component of alcoholism? retrieval of nodes and links and the subsequent visuabizati
3) What mutations in apolipoprotein genes are associateflresults within appropriate substrate regions. Furtleemn
with disease? new methods would have to be developed for visualizing the

VIl. CONCLUSION
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Fig. 11: A visualization of results from the query: “What cersiomal genes are implicated in diseases of brain develofithe
Links from an OMIM record about schizophrenia are shown teu@nt genes and PubMed documents.

number of results, and determining and displaying the mostin addition, while our current visualization favors explo-
interesting or relevant results. Navigating through theowes ration of individual nodes, such as PubMed documents or
sets of query results, in a manner analogous to a Web brawseenes, and is able to position these nodes based on nodes
forward and back buttons, also poses a challenge. One wagmantic information, more sophisticated link Itering dan
to incorporate query navigation might be to navigate usirgkploration may improve our visualization tool. In particu

a tree, in the same way that our data collector uses a quéay NVSS currently supports link Itering based on stagin
tree. However, instead of nodes corresponding to datapasesending node, but would benet from additional Itering
nodes of this navigation tree would correspond to substrai@ptions based on other link attributes. Also, NVSS's hamglli

in the navigation history, similar to the history mechanisrof multiple link Iters is currently limited to “AND” rules
used for VisPad [41]. When a node is clicked, the previoyg.g., show links with source in region X and destination in
exploration state corresponding to that node would be Idadeegion Y), but does not allow “OR” rules (e.g., show links hwit
into the visualization. source in region X and destination in either Y or Z). Adding

Also, as many biomedical datasets involve ontological gretter support for link ltering and manipulation would ks

hierarchical relationships (e.g., Gene Ontology, MeSHnhter  more powerful user exploraFion using sema.ntic sgbsﬁrate
Taxonomic/Phylogenetic trees), our visualizations cohkd AS. the amount of sem.antlcally tagged 'blomedlcaI. data
enhanced by incorporating additional visualization mdgo cont_lnue_:s to grow, we b_elleve that semgnncally-_relevan_t v
within the semantic substrate framework. In particulag thsuahzatlons Ilke_semantu_: substrates will haye '”.C“W”.‘
regions within semantic substrates could use a treemap portant rples in_exploring and understanding biomedical
to hierarchically organize nodes. For example, a visualiz tabases in the near future.

tion involving genes of multiple species might incorporate

treemap subdividing the regi_on space hierarchically aij(_)gr _ ACKNOWLEDGEMENTS

to the taxonomy of genes in the dataset. Node positioning

within each treemap cell could be customizable dependingThe authors wish to thank Sameer Antani, Olivier Boden-
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of displaying or interacting with the ontological inforniad Thoma, and the anonymous reviewers for their invaluable
associated with each node, if present. comments and assistance in evaluating our methods.



(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

9]

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

A. T. Adai, S. V. Date, S. Wieland, and E. M. Marcotte, “LGCreating
a map of protein function with an algorithm for visualizingrydarge
biological networks,"Molecular Biology vol. 340, no. 1, pp. 179-190,
Jun. 2004.

A. Aris and B. Shneiderman, “Designing semantic subssréte visual
network exploration,”Information Visualizationvol. 6, no. 4, pp. 281—
300, Nov. 2007.

M. Baitaluk, M. Sedova, A. Ray, and A. Gupta, “Biologibatworks:
visualization and analysis tool for systems biologifucleic Acids
Researchvol. 34, pp. W466-471, Jul. 2006.

V. Batagelj and A. Mrvar, “Pajek: A program for large neivk analysis,”
Connectionsvol. 21, no. 2, pp. 47-58, 1998.

M. Y. Becker and |. Rojas, “A graph layout algorithm for aiving
metabolic pathways Bioinformatics vol. 17, no. 5, pp. 461-467, May
2001.

R. A. Becker, S. G. Eick, and A. R. Wilks, “Visualizing metrk data,”
IEEE Transactions on Visualization and Computer Graphiesl. 1,
no. 1, pp. 16-28, Mar. 1995.

B. B. Bederson, B. Shneiderman, and M. Wattenberg, “Grdeand
quantum treemaps: Making effective use of 2d space to disipiery
archies,”ACM Transactions on Graphicsol. 21, no. 4, pp. 833-854,
Oct. 2002.

O. Bodenreider and A. T. McCray, “Exploring semantic gpstthrough
visual approachesJournal of Biomedical Informati¢svol. 36, no. 6,
pp. 414-432, Dec. 2003.

K. W. Boyack, K. Mane, and K. &mner, “Mapping medline papers,
genes, and proteins related to melanoma researchPraceedings of
the 8th International Conference on Information Visudiiaa (1V'04),
London, England, UK, Jul. 2004, pp. 965-971.

K. W. Boyack, B. N. Wylie, and G. S. Davidson, “Domain védization
using VxInsight for science and technology managemeludyirnal of
the American Society for Information Science and Technplegl. 53,
no. 9, pp. 764-774, Aug. 2002.

U. Brandes and D. Wagner, “visone: Analysis and visalion of social
networks,” inGraph Drawing SoftwareM. Jinger and P. Mutzel, Eds.
Berlin, Germany: Springer-Verlag, 2004, pp. 321-340.

B.-J. Breitkreutz, C. Stark, and M. Tyers, “Osprey: Atwerk visual-
ization system,"'Genome Biologyvol. 4, no. 3, p. R22, Feb. 2003.

C. Chen, “CiteSpace II: Detecting and visualizing enreggirends and
transient patterns in scienti c literatureJournal of the American Society
for Information Science and Technologyol. 57, no. 3, pp. 359-377,
Feb. 2006.

D. J. de Solla Price, “Networks of scienti ¢ paper§tiencevol. 149,
no. 3683, pp. 510-515, Jul. 1965.

G. di Battista, P. Eades, R. Tamassia, and |. G. TdBigph Drawing:
Algorithms for the Visualization of Graph®. Hall, Ed., Upper Saddle
River, NJ, USA, 1999.

P. Eades and Q.-W. Feng, “Multilevel visualization distered graphs,”
in Proceedings of the Symposium on Graph Drawing (GD'%Hr.
Lecture Notes in Computer Science, vol. 1190. Berkeley, CAAU
Springer Berlin, Sep. 1996, pp. 101-112.

T. M. J. Fruchterman and E. M. Reingold, “Graph drawing foyce-
directed placementSoftware—Practice and Experiena®l. 12, no. 11,
pp. 1129-1164, Nov. 1991.

D. C. Y. Fung, S.-H. Hong, K. Xu, and D. Hart, “Visualigirthe gene
ontology-annotated clusters of co-expressed genes: Adegign study,”
in Proceedings of the 5th International Conference on Biolaidi
Visualization (MEDIVIS'08)London, England, UK, Jul. 2008, pp. 9-14.
P. Gambette and D. H. Huson, “Improved layout of phylogiene 21
networks,” IEEE/ACM Transactions on Computational Biology anoI ]
Bioinformatics vol. 5, no. 3, pp. 472-479, Jul. 2008.

E. R. Gansner and S. C. North, “An open graph visual@maystem
and its applications to software engineerin§dftware—Practice and
Experiencevol. 30, no. 11, pp. 1203-1233, Sep. 2000.

K.-l. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, a@nA.-L.
Baralkasi, “The human disease networlgroceedings of the National
Academy of Sciencegol. 104, no. 21, pp. 8685-8690, May 2007.
K. Han, B.-H. Ju, and H. Jung, “WeblnterViewer: Visutig and
analyzing molecular interaction networksNucleic Acids Research
vol. 32, pp. W89-95, Jul. 2004.

J. Heer, S. K. Card, and J. A. Landay, “Prefuse: A todiéitinteractive
information visualization,” inProceedings of the 2005 Conference on

[24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(42]

(43]

(44]

14

Human Factors in Computing Systems (SIGCHI,0Pprtland, OR,
USA, Apr. 2005, pp. 421-430.

I. Herman, G. Melancon, and M. S. Marshall, “Graph vigstion and
navigation in information visualization: A surveylEEE Transactions
on Visualization and Computer Graphjosl. 6, no. 1, pp. 24-43, Mar.
2000.

W. R. Hersh, A. M. Cohen, L. Ruslen, and P. M. Roberts, E0R2007
genomics track overview,” irProceedings of the 16th Text Retrieval
Conference (TREC'07)Gaithersburg, MD, USA, Nov. 2007.

J. W. K. Ho, T. Manwaring, S.-H. Hong, U. Roehm, D. C. Y. Bun
K. Xu, T. Kraska, and D. Hart, “PathBank: Web-based quergnd vi-
sualization of an integrated biological pathway dataBiaseé?roceedings
of the 2006 International Conference on Computer Graphicgging
and Visualisation (CGIV'06) Sydney, NSW, Australia, Jul. 2006, pp.
84-89.

R. Hoffmann and A. Valencia, “Implementing the iHOP cortcém
navigation of biomedical literatureNature Genetigsvol. 36, no. 7, p.
664, 2004.

Z. Hu, J. Mellor, J. Wu, T. Yamada, D. T. Holloway, and C. Lis3,
“VisANT: Data-integrating visual framework for biologicaietworks
and modules,’Nucleic Acids Researchvol. 33, pp. W352-357, Jul.
2005.

T. Huan, A. Y. Sivachenko, S. H. Harrison, and J. Y. CH&mpteoLens:
a visual analytic tool for multi-scale database-driven @gital network
data mining,”"BMC Bioinformatics vol. 9, no. Suppl 9, Aug. 2008.

D. H. Huson, “SplitsTree: analyzing and visualizingokutionary data,”
Bioinformatics vol. 14, no. 1, pp. 68—73, Feb. 1998.

F. Iragne, M. Nikolski, B. Mathieu, D. Auber, and D. J. Sman,
“ProViz: protein interaction visualization and exploii” Bioinformat-
ics, vol. 21, no. 2, pp. 272-274, Jan. 2005.

P. D. Karp and S. Paley, “Automated drawing of metabolithpays,”
in Proceedings of the 3rd International Conference on Biaimiatics
and Genome Researchallahassee, FL, USA, Jun. 1994, pp. 225-238.
C. Kosak, J. Marks, and S. Shieber, “Automating the layafunetwork
diagrams with speci ed visual organization/EEE Transactions on
Systems, Man and Cybernetie®sl. 24, no. 3, pp. 440-454, Mar. 1994.
A. Y. Muhammed, K.-l. Goh, M. E. Cusick, A.-L. Barabi, and
M. Vidal, “Drug—target network,”"Nature Biotechnologyvol. 25, pp.
1119-1126, Oct. 2007.

B. A. Nardi, S. Whittaker, E. Isaacs, M. Creech, J. Jompsand
J. Hainsworth, “Integrating communication and informationotigh
ContactMap,”Communications of the ACMol. 45, no. 4, pp. 89-95,
Apr. 2002.

A. Nikitin, S. Egorov, N. Daraselia, and I. Mazo, “Pathyvstudio — the
analysis and navigation of molecular networlBibinformatics vol. 19,
no. 16, pp. 2155-2157, Nov. 2003.

D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, Bubs, and
M. Roseman, “Navigating hierarchically clustered netwotksough
sheye and full-zoom methods,’ACM Transactions on Computer-
Human Interactionvol. 3, no. 2, pp. 162-188, Jun. 1996.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wabg Ramage,
N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: A softean-
vironment for integrated models of biomolecular interacti@iworks,”
Genome Researckol. 13, no. 11, pp. 2498-2504, Nov. 2003.

C. D. Shaw, “Genomic spring-synteny visualization witAS,” in
Proceedings of the 5th International Conference on BioMadVisu-
alization (MEDIVIS'08) London, England, UK, Jul. 2008, pp. 3-8.

B. Shneiderman and A. Aris, “Network visualization by nsantic
substrates,JEEE Transactions on Visualization and Computer Graphics
vol. 12, no. 5, pp. 733-740, Oct. 2006.

Y. B. Shrinivasan and J. J. van Wijk, “VisPad: Integnafivisualization,
navigation and synthesis,” iRroceedings of the IEEE Symposium on
Visual Analytics Science and Technology (VAST'&gcramento, CA,
USA, Oct. 2007, pp. 209-210.

N. R. Smalheiser and D. R. Swanson, “Using ARROWSMITH: a
computer-assisted approach to formulating and assessiagtistihy-
potheses,"Computer Methods and Programs in Biomedicinel. 57,
no. 3, pp. 149-153, Nov. 1998.

M. Suderman and M. T. Hallett, “Tools for visually expilog biological
networks,” Bioinformatics vol. 23, no. 20, pp. 2651-2659, Oct. 2007.
K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visualerstand-
ing of hierarchical system structuredEEE Transactions on Systems,
Man and Cybernetigsvol. 11, no. 2, pp. 109-125, Feb. 1981.



	Introduction
	Related Work
	Network Visualization Methods
	Biomedical Visualizations

	Data Retrieval
	Database Model
	Data Collection
	Data Collector Design
	Data Retrieval Limitations

	Semantic Substrates
	Designing a Semantic Substrate
	Visualization Controls

	Sample Visualizations
	Hypertension
	Mental Disorders
	Breast Carcinoma
	Obesity

	Expert Evaluation
	Conclusion

