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Abstract—Though biomedical research often draws on knowl-
edge from a wide variety of �elds, few visualization methods
for biomedical data incorporate meaningful cross-database ex-
ploration. A new approach is offered for visualizing and explor-
ing a query-based subset of multiple heterogeneous biomedical
databases. Databases are modeled as an entity-relation graph
containing nodes (database records) and links (relationships
between records). Users specify a keyword search string to
retrieve an initial set of nodes, and then explore intra- and inter-
database links. Results are visualized with user-de�ned semantic
substrates to take advantage of the rich set of attributes usually
present in biomedical data. Comments from domain experts
indicate that this visualization method is potentially advantageous
for biomedical knowledge exploration.

Index Terms—Data exploration and discovery, bioinformatics,
information visualization

I. I NTRODUCTION

The amount of publicly available biomedical data has bal-
looned in the past several years with ever-improving tech-
nology and computational methods. In addition to increased
digitization of biomedical publications, improved text mining
and natural language processing techniques allow for the ex-
traction of thousands of unique relationships from biomedical
text collections. This vast quantity of biomedical data presents
a unique domain-speci�c challenge for interface designers:
what are appropriate design choices that will help knowledge
discovery and exploration within the biomedical domain?

To ground our discussion, we focus on one of the most
important and largest collections of biomedical data freely
available on the Internet, that of the National Center for
Biotechnology Information (NCBI). The NCBI maintains over
30 public databases containing biomedical information of var-
ious types, such as published medical documents (PubMed),
gene listings (Entrez Gene), protein listings (Entrez Protein),
and DNA sequence information (Entrez Sequence). It also
stores and manages pairwise associations between records in
the databases according to the various types of content. For
example, a particular documentd listed in PubMed might
be associated with all genesG from Entrez Gene that are
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mentioned ind. d may also have associations with other
PubMed documents that cited as a reference, as well as
associations to the PubMed documents thatd itself cites.
Furthermore, each geneg 2 G could have associations with
the proteins for whichg codes, or the DNA sequences in
which g's code appears. Usually, the various types of records
in these databases also have many attributes associated with
them. For example, PubMed documents might be annotated
with the date of publication, authors, and general topics, while
gene records could be annotated with the relevant species,
location on chromosome, or function. This rich space of record
attributes is key in aiding understanding of the data.

Given the huge amount of data at NCBI, and the large
number of databases, myriad variations of these associations
are possible. To organize this data in a way useful for
knowledge exploration, note that NCBI's multiple databases
can be abstracted as a massiveentity-relation graph. In this
graph, nodes correspond to individual knowledge points or
database records, such as documents, genes, proteins, and
other object types. Associations between database objectscan
then be modeled as directed or undirected links in the graph,
connecting related nodes. The entity-graph model has already
been applied to various document collections, including some
in the biomedical domain, and much research has dealt with
providing a broad overview of research publications and trends
by visualizing the graph, typically using aforce-directednode
layout scheme [17], or other schemes such as circular [12],
matrix-based [6], hierarchical [16], [35], [37], or layered [11],
[33], [44] node layouts. These types of top-down visualizations
simplify the identi�cation of concepts likeresearch fronts[14].

However, our motivation lies not in discovering overall
trends, but rather in accomplishing the everyday technical
tasks of knowledge exploration and discovery undertaken by
biomedical scientists and researchers. Scientists researching
a particular gene, protein, or topic want to �nd speci�c and
relevant information that will aid in their research. As a result,
when using NCBI's databases, they begin with a speci�c query
or set of queries, and explore outward from the initial query
result. They might also cross-reference records from multiple
databases. Our visualization tools are designed to aid this
query-speci�c exploration.

Even though the NCBI databases form an implicit entity-
relation graph, the NCBI's current web interfaces offer no
option to explore multiple areas of the graph simultaneously.
Researchers explore the NCBI databases by retrieving a single
page of information at a time, essentially limiting them to
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(a) Semantic substrates

(b) Force-directed

Fig. 1: For large cross-database exploration, semantic sub-
strates (a) provide a more useful node layout when compared
to a force-directed layout (b). In a semantic substrate, nodes
are placed into separate substrate regions based on attribute
values (here, source database) and are further organized within
each region using additional attributes. Link �lters allow�ne-
grained exploration.

viewing a single node at a time. They must continuously click
forward and backward to retrieve additional information from
other NCBI databases. However, based on our interactions
with biomedical domain experts and the kinds of exploratory
tasks they undertake, we believe that explicitly viewing and
exploring multiple nodes in parallel will lead to improved per-
formance in exploration and discovery tasks. We provide a data
collector for the NCBI databases that enables this exploration
by initially retrieving a query-based subset of nodes from
one or multiple NCBI databases. Users then specify aquery
tree that de�nes a data retrieval path between databases. For
example, users interested in the role of genetics in alcoholism
could use the data collector to perform a document keyword
search for “alcoholism” within medical literature and disease
databases, and retrieve links from the resulting heterogeneous
set of nodes to gene records in another database.

To make use of the typically rich attribute space of biomedi-
cal data, we display graph nodes and links using a visualization
technique known asuser-de�ned semantic substrates[2], [40],

as implemented in the Network Visualization by Semantic
Substrates (NVSS) tool. Figure 1a shows one such visualiza-
tion of a query about “cervical cancer” across three NCBI
databases. Unlike force-directed layouts, semantic substrates
rely mainly on node attributes for meaningful and regular node
placement into user-de�ned regions. These regions allow users
to attach speci�c semantics to node positions on-screen, and
enable a simple �ltering paradigm based on node position.
In contrast to other methods, semantic substrates offer expert
users �ne-grained control over the placement of nodes and
their spatial meaning. Furthermore, different node layouts
can be effected by simply designing additional substrates,
allowing various views of the same data, and possibly leading
to different insights about the data. Semantic substrates are
thus especially suited to the display of biomedical data, and
represent a drastic improvement over force-directed layouts
used in similar situations, such as that in Figure 1b, as well
as other node layout strategies. We used the NVSS tool to
visualize the results of several queries in NCBI's biomedical
databases. On reviewing our work, domain experts indicated
that it shows a strong potential toward biomedical visualization
applications.

The paper proceeds as follows. Section II contains a survey
of related work in network visualization and its applications
within the biomedical domain. Next, Section III describes
the data collection process, including our data model and
data collector design. In Section IV, the concept of semantic
substrates is further elaborated upon, and the controls and
methodology of designing and visualizing semantic substrates
are introduced. Section V provides several visualizationsof
sample queries that demonstrate the power and breadth of
semantic substrates in cross-database exploration, whileSec-
tion VI contains an evaluation of our visualization methodsby
domain experts. Finally, Section VII outlines further avenues
of improvement and concluding remarks.

II. RELATED WORK

Network visualization has a long and storied research
history. In this section, we provide a brief survey of work
in network visualization, and some of its many applications
within the biomedical domain. For broader overviews, referto
di Battista et al. [15], Herman et al. [24], and Suderman and
Hallett [43].

A. Network Visualization Methods

The vast majority of network visualizations make use of
force-directed layouts [17]. The basic idea behind the force-
directed layout is to model links as mechanical springs or
attractive forces between nodes, and nodes as exhibiting
repulsive forces. It thus tends to draw connected nodes to-
gether while separating unlinked nodes. This layout is favored
because it tends to reduce the number of link overlaps, and
reveals clusters that are not necessarily known by users. Pop-
ular alternatives to the force-directed layout include circular
and radial [12], hierarchical [16], [35], [37], layered [11], [33],
[44], and matrix-based [6] layouts. Circular layouts generally
place nodes around central pivot nodes, which allow for a
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simple one-dimensional ordering of nodes around the circle.
Hierarchical layouts group nodes into clusters, usually based
on link strength. Layered layouts, often used with temporal
placement strategies and citation networks, create levelsof
nodes with each level's nodes sharing a common attribute, and
create an arrangement of nodes within each level to minimize
some perceived undesirable feature of network visualizations
such as link crossings. Matrix-based layouts offer a visual
representation of an adjacency matrix, which avoids the node
and link occlusion problems of node-link methods.

However, the main drawback of these methods when com-
pared against semantic substrates is that they take a very
limited or nonexistent consideration of node attributes, which
are generally prominent in biomedical datasets, and therefore
do not impart any meaning to nodes' spatial positions. In
particular, the force-directed, hierarchical, and matrix-based
layouts are overly dependent on link attributes to determine
node positioning. Circular and layered visualizations have
been used in limited ways to augment nodes' spatial positions
with some meaning, such as ordering or grouping nodes in
terms of time, and so share some similarity with semantic
substrates. However, they lack placement methods in terms of
multiple node attributes. In other words, they are limited to
one-dimensional node ordering. On the other hand, semantic
substrates can impart meaningful signi�cance to nodes' spatial
positions across multiple dimensions.

Another drawback of these visualization methods is that as
the number of nodes and links grows, the resulting layouts
grow cluttered and dif�cult to understand. To illustrate, Fig-
ure 1b shows a force-directed layout of concepts related to
breast carcinoma. Even though the concepts and relationships
depicted in the �gure vary widely, the large number of links
between nodes causes them to be tightly grouped and unread-
able. It is dif�cult if not impossible to identify and explore
interesting relationships or patterns in the data. In contrast,
semantic substrates provide �xed node positions based on node
attributes, which makes interesting nodes easy to identifyby
their attribute values. Also, powerful and interactive methods
of node and link �ltering provide a simple means of making
sense of larger datasets.

Of course, it may be meaningful to incorporate some of
these visualizations into semantic substrates to allow more
compelling exploration of particular biomedical datasets. See
Section VII for a discussion of some of these potential
additions.

B. Biomedical Visualizations

Because many biomedical concepts and relationships can be
abstracted as networks (e.g., molecular interactions, metabolic
pathways, regulatory networks, disease correlations), many
visualization systems have been developed that cater to explo-
ration of speci�c knowledge domains or biological networks.
These visualizations abstract some knowledge domain as a
network representation, and then use a corresponding network
visualization method to display the data. Generally, the layout
method is chosen based on the general network topology of
the underlying knowledge domain.

Many systems have been developed for visualizing molec-
ular interactions and pathways within and across datasets,
including Cytoscape [38], Pathway Studio [36], Osprey [12],
WebInterViewer [22], ProViz [31], VisANT [28], Path-
Bank [26], BiologicalNetworks [3], and most recently, Prote-
oLens [29]. Most of these systems' visualizations are basedon
specialized forms of the force-directed node-link layout [32],
[5], though most offer alternative network views such as
circular, radial, hierarchical, or layered layouts. Because they
are designed for exploration, many of these systems offer
querying capabilities based on statistical attributes of the
network, or local topology, to draw attention to interesting
parts of the network. Some (e.g., [12], [28]) also allow for
selective expansion of network nodes, rather than displaying
the entire network, and many are extensible via user plugins.

There are also several visualization tools developed to aid
analysis of inter-species relationships, based on genomicor
phylogenetic data. Fung et al. [18] evaluates the effects ofus-
ing two visualizations, based on matrices and bipartite graphs,
on DNA microarray data analysis. Shaw [39] presents another
analysis-based visualization technique where the similarity of
gene order across species is displayed as a node-link diagram
using a force-directed layout. Also, a number of systems
visualize phylogenetic networks, which represent speciesas
nodes and ancestral relationships as edges. Huson [30] presents
one popular method for layout of phylogenetic networks called
SplitsTree, and Gambette and Huson [19] describe a number
of algorithms for drawing split networks.

To visually explore relationships and connections between
diseases and their associated genes, Goh et al. [21] generated
two complementary network projections they term the human
disease network (HDN) and the disease gene network (DGN).
In the HDN, nodes are disorders and they are connected if
they share a disease-causing gene, while in the DGN nodes
are genes and they are linked if they are associated with the
same disease. They use a force-directed layout to generate
these two projections, and use color and size coding to impart
information about the diseases and genes in question. They
analyze the graph noting interesting statistical and topological
properties such as apparent clusters of diseases or genes. Based
on this work, Muhammed et al. [34] create and analyze a
drug—target network, which visualizes associations between
drugs and the proteins that they target or affect.

A number of tools were developed speci�cally for visualiz-
ing large biological networks. Pajek [4] is a popular software
package for visualizing biomedical datasets such as DNA
interactions and genealogies, as well as a variety of other large
networks including citation networks. Adai et al. [1] present
a large graph layout algorithm that computes a Minimum
Spanning Tree (MST) of the network, and then uses the MST
for node layout based on an iterative force-directed algorithm.
Using this algorithm they created and explored a large protein
homology network. Also, the knowledge visualization tool
VxInsight [10] displays large networks of information suchas
documents or genomic data as a 3D mountainous landscape,
where peaks correspond to important data points. Boyack et
al. [9] used VxInsight to study how genes, protein and papers
related to melanoma are interconnected via co-occurrence
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patterns of Medical Subject Heading (MeSH) terms. They gen-
erated a manually-annotated Paper-Gene-Protein map (papers
from MEDLINE, genes from the Entrez Gene database, and
proteins from UniProt) using a force-directed layout algorithm
to see prominent co-occurrence relationships. Their visualiza-
tion was used to �nd “bursty” genes related to melanoma
research, indicating possible correlations. Pathway Studio [36],
Osprey [12], ProViz [31], and VisANT [28] also specialize in
large networks. Additional commonly-used tools for biomedi-
cal network visualization include the Prefuse toolkit [23]and
GraphViz [20].

Several visual tools have been created for exploring
databases of biomedical literature and the mined semantic
relationships found within. Arrowsmith [42] is a textual Web-
based tool that supports the discovery of relationships between
two sets of literature in MEDLINE, a database of life science
and biomedical information. Arrowsmith lets users look for
items or concepts that may be common between two dis-
tinct sets of articles, but the presentation of query results
is limited to its text interface. In a similar vein, the iHOP
system [27] attempts to mine gene and protein cooccurrences
through manual user speci�cation of sentences of interest from
PubMed abstracts. Aggregated results are displayed as an
entity-relation graph of genes, but again with no regard to each
gene's attribute values. In other words, node layout is purely
link-based and ignores the intrinsic qualities of each gene,
which if used would provide additional exploratory value.
CiteSpace [13] is a system for detecting and visualizing trends
and changes in scienti�c disciplines and their corresponding
literature over time, based on clusters of important keywords.
To explore the literature, two complementary visualizations
are presented that are based on cluster views and temporal
views. CiteSpace uses a force-directed layout to provide a
high level overview of important or seminal works. Boden-
reider and McCray [8] examine several network visualization
methods to explore semantic relationships from the Uni�ed
Medical Language System, a database of medical concepts
and terminology gathered from many medical vocabularies.

III. D ATA RETRIEVAL

To facilitate exploration of the NCBI databases, we designed
a data collector to retrieve a small subset of the entire data
collection, based on an initial keyword query and coupled
with subsequent node and link expansion. In this section, we
describe our entity-relation graph model in more detail, aswell
as the Web services available through NCBI's website, both
of which in�uenced our �nal data collector design.

A. Database Model

Figure 2 shows the largest of NCBI's databases, along with
inter-database associations. As mentioned previously, rather
than keeping these databases distinct within our data collection
and visualizations, we abstract NCBI's databases into an
entity-relation graph. In this graph, NCBI database items,
such as documents, genes, and proteins correspond to nodes
of the graph. Nodes have unique identi�ers as well as many
other attribute values corresponding to each node's associated

Fig. 2: The largest of NCBI's databases, where each node
corresponds to a database, and node color representing the
database's size. Links between databases are also shown.
Associations between databases are numerous, and being able
to explore these relationships is key to understanding datafrom
these databases. (from http://www.ncbi.nlm.nih.gov/Database/)

information. Also, the set of attributes varies according to
the type of node. For example, PubMed document nodes
include attributes for the document's title, authors, yearof
publication, and keywords, while Gene nodes have attributes
for gene name, genus and species name, and chromosome
location, among others. To ensure meaningful node placement
in semantic substrate regions, several node attributes that
represent semantic information should be selected from each
node. Fortunately, each node type in the NCBI graph has many
attributes and it was therefore easy to settle on appropriate
attributes for node layout.

While database items correspond to nodes of the entity-
relation graph, database associations correspond to linksof the
graph. Each link has pointers to the two nodes that it joins,
as well as a type classi�cation, such as “document citation”
or “content similarity”. In addition, the graph has severallink
properties that make it more dif�cult to visualize:

1) Nodes may be connected by multiple links.
2) Links may be weighted or unweighted.
3) Links may be directed or undirected.

For example, suppose two medical report documentsd1; d2

concerning breast cancer appear in the PubMed database.d1

may cite d2, so after mapping to the graph, a “document
citation” link would point fromd1 to d2. Likewise, becaused1

andd2 have similar content, an undirected “content similarity”
link, with weight of 0.9, might joind1 andd2. It is therefore
vital to incorporate a method of distinguishing or �lteringlinks
based on link attributes.

http://www.ncbi.nlm.nih.gov/Database/
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Fig. 3: The main interface of our data collector. Users specify
a keyword query in the search entry �eld, and a query tree
representing the path of data retrieval. The data collectorthen
traverses the query tree, collecting nodes and links along the
retrieval path. Here, “alcoholism” will be the initial query in
the OMIM database, and links into the Gene and PubMed
databases will be collected.

B. Data Collection

To retrieve data, we use the Entrez Programming Utili-
ties (eUtils)1. eUtils is a programming interface to the En-
trez Global Query Cross-Database Search System outside of
NCBI's regular Web browser-based query interface. We use
the following eUtils services in our data collector:

1) eSearch, which executes a keyword search query in a
speci�ed database, returning a set of matching record
ids and relevance scores.

2) eLink, which retrieves links from a given set of record
ids to record ids from another database.

3) eFetch, which retrieves all record attribute values for a
given record id.

Responses are retrieved in an XML format, and thus are easy
to parse with any standard software. In addition to eUtils,
NCBI provides a Web service that offers access to the Entrez
Utilities via the Simple Object Access Protocol (SOAP). We
developed our data collector in C# .NET using this service.

C. Data Collector Design

As we want our tools to be used by as wide an audience
as possible, we designed our data collection tools to work
with any NCBI database that users might want to query.
Figure 3 depicts our data collector's user interface. It enables
user queries of NCBI databases by making use of a keyword
search querycoupled with aquery tree. The search query
is a collection of keywords and an initial database (e.g., in
Figure 3, OMIM) in which to search. The query tree is a
speci�cation of the requested links between the search results
and entities in other databases. This tree represents the path of
data retrieval that will be taken by the data collector. Eachnode
in the tree corresponds to one of NCBI's databases, with the
root node corresponding to the initial search query's database.
Links between nodes in the query tree represent inter-database
links that will be collected between records from different

1http://eutils.ncbi.nlm.nih.gov/

databases. To retrieve intra-database links, users can link a
database to itself. For example, in Figure 3, the user has
speci�ed an initial query string of “alcoholism”, and initial
database of OMIM. The corresponding query tree speci�es
that links from OMIM to the PubMed and Gene databases
should next be retrieved, as well as links from the resulting
set of PubMed documents into the Gene database. This query
tree will cause the data collector to retrieve links into the
Gene database from multiple sources, allowing for potentially
interesting visualizations that make it easy to �nd the genes
most linked with alcoholism.

The data collector proceeds by executing an eSearch query
in the database corresponding to the root node of the query
tree. It then gathers data links and nodes by traversing the
tree and executing corresponding eLink queries. Finally, node
attributes for all collected nodes are retrieved using the eFetch
utility. The data collector generates two tab-delimited text �les
as output corresponding to node data and link data.

Because our visualization method (see Section IV) relies
heavily on node attributes for node placement, we designed our
data collector to allow users a �exible de�nition of required
attributes without interacting with the data collector's code. We
store a list of attributes to be retrieved outside of the software
in an external XML attribute description �le. Each attribute
in the XML �le is composed of attribute name, attribute type,
optional �lter string, an indicator of whether the attribute can
have multiple values (e.g., author names), and optional conver-
sion rules for speci�c attribute values. These conversion rules
were sometimes necessary to resolve Entrez database �eld
inconsistencies. For example, Gene records correspondingto
human genes have attributes for the chromosome on which
the gene is found, which can be either numeric (e.g., 9) or
nominal (e.g., X, Y). Using a conversion rule, we mapped
X and Y to chromosome numbers 23 and 24 respectively, to
allow for more meaningful Gene node positioning.

D. Data Retrieval Limitations

NCBI enforces rate limits for programs using the XML
eUtils interface. Programs using the interface are limitedto a
single request every 3 seconds. In addition, the system imposes
limits to avoid particularly time-consuming queries. If a query
takes longer than 30 seconds to complete, the query is canceled
and no results are returned. These limits create a challengefor
interactive retrieval of query result nodes and links, as the data
collector must obey these limits to ensure a full set of query
results. They also prevent the timely retrieval of potentially
interesting nodes and links between the results of independent
keyword queries, or independent clusters of nodes.

Our initial versions of the data collector experienced time-
outs and service disconnects due to these limits, resultingin
incomplete or missing query results. To avoid these problems
in later versions, we used a combination of query batching,
attribute �ltering, and result prefetching. We also executed
several simpler queries using the same query text, but search-
ing different node attributes in each query, such as the title,
body text, or clinical synopsis attributes. Thus, we ensured that
each individual query was completed within the required time

http://eutils.ncbi.nlm.nih.gov/
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limit, and still collected enough data to be useful. Due to these
multiple independent queries, we often retrieved redundant
node records, which were removed from the �nal result.

An alternative to working within NCBI's rate limits is to
download a copy of NCBI's public databases and simply query
the local copy. However, as the NCBI's biomedical databases
continue to grow and be augmented with additional semantic
information, the feasibility of storing and querying a local copy
rapidly diminishes, due to size and synchronization issues.

IV. SEMANTIC SUBSTRATES

Typical graph visualizations within the biomedical domain
use force-directed node layouts [17]. However, as stated
earlier, force-directed layouts make little or no use of node
attributes for node positioning, and thus overlook an im-
portant dimension of semantic information. Furthermore, it
can be dif�cult to visually distinguish nodes of different
types using force-directed layouts, as demonstrated by the
“hairball” visualization in Figure 1b. Even though node color,
shape, or size can be used to differentiate node attributes
(in Figure 1b, color is used), the emphasis on placement
using links causes a cluttered and confusing display, even for
some small to moderately-sized networks. This clutter extends
to the network's links in that it is dif�cult to follow links
from source to destination. As a result, force-directed layouts
tend to hamper the type of high-dimensional, cross-database
exploration that we seek.

Therefore, instead of using link strength (as force-directed
layouts do), we position nodes withinsemantic substrates. A
semantic substrate consists of a collection of non-overlapping
regions within which nodes are placed and positioned based
on node type and other node attributes. To create a semantic
substrate, users create a set of regions, and select node at-
tributes and values that determine into which region each node
is placed. For example, a natural way to segregate nodes into
regions would be to place all PubMed nodes in a single region,
all Gene nodes in another region, and so on for each database
under consideration. Next, for each substrate region, users
select additional node attributes and values to determine how
nodes are positioned within the region, such as positioning
PubMed nodes based on their publication date, with older
publication dates in the left portion of the region, and newer
dates to the right.

Rather than relying on links between nodes, semantic sub-
strates provide a consistent node layout, mostly independent
of link data. While this may result in more link overlaps,
semantic substrates preserve relationships among nodes ofthe
same type. Thus, if users already have ideas or expectations
of the types of patterns in their data (as is usually the case
with biomedical data), placing nodes based on known attribute
values provides a useful visual grounding for further data ex-
ploration. For example, the PubMed region layout mentioned
above, where PubMed nodes are positioned by publication
date, allows users to quickly �nd the most recent articles
covering their topic of interest, rather than having to huntfor
them on the screen. As another example, Gene nodes might
be positioned within a gridded substrate region according to

their genetic locus, with the X-position corresponding to the
gene's chromosome, and the Y-position corresponding to the
gene's chromosome band.

Semantic substrates are also useful for cross-database ex-
ploration because they provide a natural way to group nodes
of the same type together. Each database can be represented
in a substrate by its own region (e.g., having separate regions
for PubMed, Gene, Protein, OMIM, and Taxonomy). As a
result, it is easy to distinguish intra-database links frominter-
database links by visual inspection. Segregating nodes into
distinct regions also simpli�es the user interaction necessary
to �lter nodes and links to a selected subset of interest,
which is important when visualizing large databases with many
relationships between nodes. Links can be identi�ed using
the attribute values of the nodes that they connect, which
can be determined easily using the nodes' positions, and can
be �ltered based on both node and link attribute values. For
example, users might �nd a cluster of interesting links between
certain PubMed nodes and Gene nodes, where the PubMed
nodes' publication date was after 1980 and the Gene locus
was on chromosomes 12 and 13.

An additional bene�t of using semantic substrates is that
they provide a natural and powerful way of creating multiple
views of the same dataset. To do so, users can simply create
another semantic substrate by choosing a different region
layout, or selecting different node attributes and values to use
for region placement and positioning. Having multiple views
of the same data is especially useful for visualizing the large,
high-dimensional datasets used by the biomedical community,
where new and interesting visualizations can be obtained by
using a different subset of attributes and values. These different
visualizations can afford different insights into the dataset
under consideration. We used the implementation of semantic
substrates calledNetwork Visualization by Semantic Substrates
(NVSS).

We now provide an overview of the semantic substrate
design process, and the visualization controls available in
NVSS.

A. Designing a Semantic Substrate

Designing a substrate in NVSS amounts to deciding the
number of substrate regions, their positions on the display, and
which attributes to use for node placement into and within
regions. In general, the process of designing satisfying and
useful substrates is an iterative procedure. Often it is hard
to tell how useful a given substrate will be for exploration
prior to loading and exploring the data. In addition, the node
placement method (i.e., along the regions' X-axis, Y-axis,or
both) may affect the visualization's usefulness.

Fortunately, NVSS simpli�es the creation of multiple se-
mantic substrates using a built-in substrate designer, fully
described by Aris and Shneiderman [2] and shown in Fig-
ure 4. Users draw substrate regions in the right pane of
the designer, and then set properties for each region in the
left pane. For each region, the most important settings are
those which determine the nodes that will be placed in the
region, set using the “Attribute” and “Attribute value” �elds.
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Fig. 4: The NVSS substrate designer. Users draw regions in the
right pane. Each region's node grouping and display properties
can be set in the left pane.

In Figure 4, the user has created six regions, correspondingto
nodes of type Gene (the central selected region), Homologene,
OMIM, PubMed, Protein, and Taxonomy. For each region,
the node positioning within the region is further set using the
“Placement method” �eld, which opens another dialog box
with node positioning options. In the �gure, for the central
Gene region, the “GridPlot XY” method was chosen, with
the gene chromosome number used along the X-axis and the
chromosome band used along the Y-axis. Apart from node
placement and positioning, various display properties foreach
region can be set, including region labels, node colors, and
region �ll colors.

To illustrate the substrate design process and show the
dramatic difference when using different node placement and
positioning attributes, we now describe the process we fol-
lowed to create a substrate region containing PubMed nodes.
These nodes have several attributes which could be useful
for node placement, such as authors, publication dates, and
publication types. They were also of particular interest and
a challenge to visualize due to the relatively large number
of PubMed results in our queries and their somewhat skewed
distribution of publication dates.

Figure 5 contains three variants of a substrate region con-
taining the same data, namely PubMed nodes from a query
about “cervical cancer”. Figure 5a is our initial visualization
of these nodes, using the publication year attribute for layout
along the X-axis and with uniform attribute binning. As can
be seen, the right portion of the region is overcrowded with
nodes, indicating that most documents in the query result
were published within the past ten years. Another problem
with the initial layout, of which we were not aware before
visualizing the data, is the large gap in PubMed results
between 1948 and 1980. This layout wastes screen space and
apart from distinguishing the 1948 publication, provides no
useful information about the visualized data.

To remedy these problems, we used a different layout,
shown in Figure 5b. In particular, we used the Y-axis for
node placement and used custom (i.e., non-uniform) bin sizes
to group nodes. This layout causes nodes to be spaced more
evenly, and allow users to more easily distinguish individual
nodes, which is important for useful data exploration espe-
cially in combination with link visualizations. We also size-

(a)

(b)

(c)

Fig. 5: Three variants of a region with PubMed nodes using
different node positioning attributes: (a) Publication year along
X-axis with uniform binning; (b) Publication year along Y-
axis with custom binning and size-coding for node indegree;
(c) Publication year along X-axis and publication type along
Y-axis.

coded each node to indicate the node's indegree, to impart
some measure of the node's importance to the query as
a whole. Note that choosing appropriate custom bin sizes
requires prior knowledge about the distribution of attribute
values, so proper bin lengths can be set only after an initial
visualization. These dif�culties can also be somewhat mit-
igated by integrating additional statistical displays, such as
attribute value histograms, into the substrate designer, as well
as incorporating scrolling and zooming features within the
visualization itself to view compact regions more closely.We
plan to extend NVSS to include these features.

For a third example layout, shown in Figure 5c, we created
a 2D layout using two attributes: publication year along theX-
axis, and publication type along the Y-axis. This layout allows
users to �nd interesting groups of publications by both type
and year simultaneously, and provides a quick overview of
the types of publications relevant to the query of interest.It
also demonstrates how using a different semantic substratecan
provide a different means of exploring the same data.

B. Visualization Controls

After designing substrates, users proceed to visualize their
data using NVSS's visualization module, which has a variety



8

Fig. 6: Visualization and �ltering controls available in NVSS.
Above, users select colors for substrate regions, nodes, and
links. Check boxes also allow users to selectively display
subsets of links based on source and destination region. Below,
users perform additional link �ltering based on additional
source and destination node attributes, using checkboxes to
enable �lters, and two-way sliders to select attribute value
ranges.

of additional controls. Here we describe these controls; we
will provide complete visualization examples in subsequent
sections. Figure 6 shows the control panel of NVSS's visual-
ization module. In the top portion, users can customize node,
region, and link colors. The numbers next to each region and
link type represent the number of nodes in regions and links
between regions, respectively. In addition, users can control
the visibility of links using the link check boxes. In the �gure,
the user has chosen to show the 6 links from Gene nodes to
Homologene nodes, and the 103 links from Gene nodes to
Protein nodes.

The lower portion contains additional link �lters based
on source and destination node attributes. These �lters are
vital when exploring very large databases with many node
relationships, as are often present in the biomedical domain,
to ensure a meaningful and useful visualization. In the �gure,
three attribute value �lters are activated, including links from
those Gene nodes with chromosome number between 7–20
and genus Homo or Mus, as well as a �lter for OMIM nodes
with modi�cation dates between 2001 and 2009. In addition to
the above controls, NVSS provides node details when nodes

are selected in the display, accessible by clicking the “Node
Details” tab at the top. Furthermore, by clicking on a node
in the visualization, users can open a Web browser to display
a URL associated with the node, which for our datasets and
queries, was the NCBI webpage corresponding to that node.
This feature was especially important to our users, as our data
collector was unable to retrieve all the attributes in which
biomedical researchers were interested due to database access
limitations.

V. SAMPLE V ISUALIZATIONS

Based on our interviews with domain experts (see Sec-
tion VI), we created several visualizations of sample queries
that might interest typical biomedical researchers, based
around diseases being actively researched at NCBI, the Na-
tional Institutes of Health (NIH), and other biomedical centers.
Our queries encompassed six NCBI Entrez databases, namely
PubMed, OMIM, Gene, Protein, Homologene, and Taxonomy.

In collecting data from these databases, we found that the
set of attributes available through the Entrez system was rather
limited in size and breadth. As a result, the node placement
and positioning attributes we used for demonstration purposes
would be of somewhat limited use for the highly speci�c
queries of biomedical research. NCBI's internal databases,
hidden from the Web, contain a much richer set of attributes,
and it is these attributes that would make for even more
interesting visualizations using semantic substrates, which
thrive on rich attribute spaces. See Section VI for a description
of some of these attributes and their potential use.

The queries and their visualizations are detailed below.

A. Hypertension

Our �rst query was of the general form: “What are the
most signi�cant publications, genes, and diseases relatedto
hypertension?” To execute this query, we performed a keyword
search in the OMIM database for “hypertension”, and retrieved
links from the resulting set of OMIM nodes to the Gene and
PubMed databases. We also retrieved links from the Gene
nodes to PubMed nodes, as well as some similarity links
between PubMed records. For the hypertension query, we
collected a total of 433 nodes, including 357 PubMed records,
45 Gene records, and 31 OMIM entries, in addition to 440
links.

Figure 7 shows one visualization of the query results, using
a substrate with separate regions for each database. To position
nodes within regions, we ordered PubMed and OMIM nodes
by publication year and modi�cation year, respectively, while
for Gene nodes, we used a 2D layout using each node's
Genus and Chromosome Number attributes. In the �gure, the
links have been �ltered to only those PubMed documents
published in 2002, using NVSS's slider bar �lters. Notice
that the collection of PubMed documents within that time
range are linked from all three databases, and most are linked
from a single source only. The �gure exempli�es the need
for visual cross-database exploration, in that this phenomenon
likely resulted from our not knowing the correct keywords
to use to return all relevant results. This is a typical problem



9

Fig. 7: Results of a cross-database query about hypertension. Gene–PubMed, OMIM–PubMed, and PubMed–PubMed links are
shown where the link's target publication was published in 2002. Notice that links to the relevant publications are scattered
across multiple sources and would be dif�cult to �nd using non-visual cross-database exploration methods.

with strict keyword searches, even those performed by domain
experts. To retrieve the equivalent set of results in a traditional
textual exploration interface would require repeating thequery
several times in multiple databases, and manually merge the
results. Using semantic substrates, we can easily perform these
cross-database searches and visually display query results in
an intuitive and useful manner.

B. Mental Disorders

Our next query was gene-centric and involved �nding genes
implicated in several mental disorders, namely anxiety, de-
pression, addiction, and schizophrenia, as well as publications
related to these genes. For this query, we used the same
databases as used in our hypertension query (i.e., OMIM,
Gene, and PubMed). However, we performed four separate
keyword searches in OMIM, and retrieved links from each
separate search to the Gene database. We then retrieved links
to PubMed from the Gene result nodes.

Figure 8 shows our visualization. Even though we used
the same databases as before, our substrate is substantially
different, demonstrating the ease of creating multiple views
of the same data. The four OMIM keyword search results
are placed into different regions, labeled Anxiety, Depression,
Addiction, and Schizophrenia, respectively, which provide a
simple means of visually distinguishing OMIM nodes from the
different keyword searches. Gene and PubMed nodes again are
given their own substrate regions. For OMIM node positioning,
we used database identi�ers, while Gene nodes are positioned
using chromosome number (Y-axis) and chromosome band
(X-axis). PubMed nodes are positioned using publication

date (Y-axis) and node indegree (X-axis), which allow visual
determination of PubMed nodes' recency of publication and
importance in terms of citation by Gene nodes. We collected
a total of 80 OMIM nodes (20 per keyword search), 98 Gene
nodes, and 1317 PubMed nodes, and a total of 2034 links.

We can see that several clusters of genes collected through
links from OMIM can be found in the Gene region, which
may be dif�cult to �nd using non-visual search methods. Also,
when applying �ltering to show links from OMIM nodes to
centrosomal Gene nodes (i.e., those genes with middle band
numbers), we observe that these genes have links from a large
number of OMIM nodes related to all four queried mental
disorders. This may indicate that the genes under consideration
have strong ties to all these disorders. Upon examining the
PubMed nodes, obtained through links from the Gene nodes
(but not shown), we see that research into genes related to
the queried mental disorders has a rich history. In addition,
the PubMed nodes with large indegree (i.e., those nodes with
a large in�uence on the Gene nodes as measured by number
of links from Gene nodes) readily stand out, allowing quick
determination of the most relevant publications related tothe
genes of interest. As this example shows, NVSS's interactive
�lters allow the exploration of data in a variety of useful ways.

C. Breast Carcinoma

For our third query, we searched for cross-species genetic
information and publications related to breast carcinoma.An
initial keyword search for “breast carcinoma” was performed
in the Homologene database to retrieve cross-species infor-
mation. Links to the Gene, OMIM, Taxonomy, and PubMed
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Fig. 8: Results from a query about genes implicated in several mental disorders. Multiple OMIM keyword searches allow a
visual query intersection of Gene nodes. Also, link statistics from Gene nodes to PubMed nodes are used to �nd the most
prevalent publications related to these genes.

databases were then retrieved. We also retrieved additional
links from the returned OMIM nodes to PubMed nodes. In
total, we retrieved 14 Homologene, 15 Taxonomy, 26 OMIM,
129 Gene, and 587 PubMed nodes, along with 908 links.

Figure 9 shows our query results in a substrate with �ve
regions, with each region corresponding to a different database
accessed in our query. For Homologene node positioning,
we chose a taxonomy ID associated with the node, which
indicated its primary species association. Of course, eachnode
had several such associations, as evidenced by the links from
each Homologene node to multiple Taxonomy nodes. We
divided the Taxonomy region based on the species division as
speci�ed in the Taxonomy database. For the OMIM region,
both the modi�cation date (Y-axis) and indegree (X-axis)
were used for node positioning. Finally, for the PubMed and
Gene regions, we used same the node layouts as those in our
previous query about mental disorders.

By interactively �ltering links, we quickly found a Homolo-
gene node with links to many Taxonomy nodes (highlighted
in the �gure). In other words, we found a gene with many
cross-species links that was especially relevant to breastcar-
cinoma. The node's details are shown in NVSS's right panel,
which indicates the underlying gene symbol as BCAS2 and
corresponding title “breast carcinoma ampli�ed sequence 2”.
Also note that the Homologene node in question has links to a
tight cluster of Gene nodes, which may indicate the disease's

approximate genetic locus. As before, �nding relevant OMIM
entries and PubMed documents becomes simple when using
the indegree for node layout in their respective regions. All
these visual indications can allow domain experts to �nd useful
starting points for more in-depth exploration.

D. Obesity

Our �nal example query for relevant entries about “obe-
sity” also used the Protein database to �nd relevant proteins,
in addition to the previously-used PubMed, Gene, OMIM,
Homologene, and Taxonomy databases. We began with two
keyword searches for “obesity” in the Gene and PubMed
databases. Next, we retrieved links from the Gene node results
to nodes in the OMIM, Homologene, Protein, and PubMed
databases. Finally, we retrieved links from the Homologene
results to Taxonomy database nodes. A total of 200 PubMed,
27 Gene, 18 OMIM, 7 Homologene, 12 Taxonomy, and 103
Protein nodes were retrieved, and 425 links.

Figure 10 contains our obesity query visualization. For node
positioning in the Protein region, we used the corresponding
protein's length, which served as a rough clustering of the
protein nodes. For the remaining regions we used the same
attributes as in the previous visualization. In the �gure, we
�ltered the links to show only those from Gene nodes to
Protein and OMIM nodes, as well as links from Homologene
nodes to Taxonomy nodes. In doing so, we observe that several
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Fig. 9: Results from our query on breast carcinoma. The highlighted Homologene entry, corresponding to the BCAS2 conserved
gene, contains links to a wide variety of Gene and Taxonomy nodes, indicating its importance to breast carcinoma.

Fig. 10: A substrate showing results from our obesity query.Several interesting patterns emerge, such as several Gene nodes
with links to multiple OMIM nodes or multiple Protein node clusters.

Gene nodes have links to multiple OMIM nodes, indicating
their possible connection with several diseases or medical
conditions related to obesity. In addition, some Gene nodes
have links to multiple clusters of Protein nodes, which may
indicate their importance to the query result. With different
node �ltering, domain experts can explore the query resultsto
discover additional details useful in their research.

VI. EXPERT EVALUATION

To judge the effectiveness of our visualization methods
using semantic substrates, we met with ten bioinformatics

specialists from the National Library of Medicine. These
researchers have expertise in a variety of areas, including
biomedical informatics, biomedical ontologies, machine learn-
ing, and text analysis. Most also hold medical degrees and
PhDs in medical informatics and computer science, and have
on average 15 years of experience in their respective �elds.

These researchers mainly used the PubMed, Gene, and
OMIM databases for their work, in addition to NCBI's various
other databases. In general, they were dissatis�ed with the
current state of affairs in bioinformatics visualizations, espe-
cially related to visualization of manually or automatically
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extracted semantic relationships among PubMed documents,
as well as the hierarchical relationships of the MeSH and
GO ontologies. For example, text mining methods on a large
collection of PubMed documents, Gene records, and OMIM
articles might yield relationships such as “gene X is correlated
with disease Y”. They had tried using off-the-shelf tools such
as Prefuse [23] and GraphViz [20] to visualize these relation-
ships, but found them to be inadequate for exploratory pur-
poses, mainly due to “insuf�cient �exibility” of the data visu-
alization and their “limited navigation paradigms”. The sheer
number of semantic relationships extracted from PubMed
documents — in the hundreds of thousands — was also a
limiting factor, as most visualizations lost their effectiveness
when the number of visualized relationships exceeded the
hundreds. Also, these tools generally did not allow integration
of data from multiple sources, which severely limited their
utility. Unlike the existing visualizations, semantic substrates'
powerful �ltering capabilities are better-suited for showing
interesting subsets of large, complicated networks.

We arranged a 1.5 hour combined presentation and focus
group discussion with the team of experts. A half-hour was
dedicated to a presentation of our exploration methodology
using semantic substrates, after which we asked for com-
ments and feedback from the experts for the remaining hour.
We asked the experts how biologists seeking information
from the NLM or NCBI databases would normally explore
their vast collections of data. They commented that detailed
literature and topical surveys are normally carried out by
the NLM's expert librarians, who maintain their own private
indexing systems, separate from the public interfaces available
through the Internet. They also mentioned that typical keyword
searches using the NCBI's Web interfaces would not return an
exhaustive collection of relevant literature and information, as
query results are heavily dependent on the exact terms used,
and do not adequately take synonyms and other relationships
into account. They were excited that our approach augmented
an initial keyword search with link information that effectively
expands the results of a given query in possibly interesting
ways. In other words, they believed that it is not strictly
necessary to know all the synonyms or related terms for
a given keyword query, as these synonyms are implicit in
the link relationships found among the query results. They
further commented that semantic substrates offer a “useful
visual metaphor” for exploring ever-expanding collections of
semantic relationships in a scalable way. The researchers
also mentioned that “pulling in multiple databases for cross-
searching” was the correct way to explore large collectionsof
biomedical data.

To evaluate our methods in the context of speci�c technical
queries, we used our data collector to prepare sample query
results involving the PubMed, Gene, and OMIM databases. We
retrieved data based on several queries from the TREC 2007
Genomics Protocol [25], three of which were as follows:

1) What centrosomal genes are implicated in diseases of
brain development?

2) What is the genetic component of alcoholism?
3) What mutations in apolipoprotein genes are associated

with disease?

We visualized the query results in NVSS, using one region
for each of the PubMed, Gene, and OMIM data. Figure 11 is
one such visualization of the brain development query. The
�gure shows one particular OMIM node, corresponding to
schizophrenia, and all the Gene and PubMed records that it
references. The Gene records are organized by chromosome
number, PubMed documents are ordered by year of publica-
tion, and OMIM entries by the last date of modi�cation.

The NLM team commented that the referenced genes were
likely implicated in or related to schizophrenia. They liked that
they were able to see, at a glance, what the most important
genes and documents related to schizophrenia were. They also
suggested that using more attributes of each node type would
make it easier to answer the query. In particular, “centrosomal
genes” refers to those genes with a central physical location
on their respective chromosomes — in other words, with a
middle band number. As evidenced by �gures 8, 9, and 10,
gene chromosome and band numbers serve as natural and
useful attributes for node positioning within semantic substrate
regions. To improve the visualization of this query's results,
we could position Gene nodes using chromosome number
and chromosome band number, as we had done earlier. This
modi�ed layout would allow users to quickly �nd centrosomal
genes at a glance, by examining the nodes' spatial positions
within the region.

To improve the PubMed and OMIM regions, the researchers
suggested additional node attributes to use. For PubMed
nodes, genotypic and phenotypic associations might make
for interesting visual classi�cations. Also, for OMIM nodes,
rather than using modi�cation date for node positioning, they
suggested using the class of disease connected with the OMIM
entry. The researchers commented that this richer set of node
attributes would greatly enhance the visualization and make
it immediately useful for answering a variety of queries.
Unfortunately, these attributes, while present in internal NCBI
databases, were not accessible through the NCBI's Web in-
terfaces. However, if available, these attributes could beeasily
integrated into semantic substrate designs and would be useful
for exploring query results.

The NLM researchers offered several suggestions for mak-
ing cross-database exploration in NVSS more dynamic. In par-
ticular, they wanted ways to re�ne their initial query basedon
additional keywords found in the set of results, or selectively
�lter or expand subsets of the graph. Also, the NLM team
suggested that it would be useful to dynamically add more
substrate regions, and reposition regions if the current substrate
layout was not found to be useful. We plan to integrate these
improvements into future versions of NVSS.

VII. CONCLUSION

Parting from textual query result lists like those at NCBI's
website, semantic substrates offer a novel way to browse and
explore biomedical data across multiple databases. This brows-
ing would be further enhanced by incorporating dynamic query
retrieval of nodes and links and the subsequent visualization
of results within appropriate substrate regions. Furthermore,
new methods would have to be developed for visualizing the
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Fig. 11: A visualization of results from the query: “What centrosomal genes are implicated in diseases of brain development?”
Links from an OMIM record about schizophrenia are shown to relevant genes and PubMed documents.

number of results, and determining and displaying the most
interesting or relevant results. Navigating through the various
sets of query results, in a manner analogous to a Web browser's
forward and back buttons, also poses a challenge. One way
to incorporate query navigation might be to navigate using
a tree, in the same way that our data collector uses a query
tree. However, instead of nodes corresponding to databases,
nodes of this navigation tree would correspond to substrates
in the navigation history, similar to the history mechanism
used for VisPad [41]. When a node is clicked, the previous
exploration state corresponding to that node would be loaded
into the visualization.

Also, as many biomedical datasets involve ontological or
hierarchical relationships (e.g., Gene Ontology, MeSH terms,
Taxonomic/Phylogenetic trees), our visualizations couldbe
enhanced by incorporating additional visualization methods
within the semantic substrate framework. In particular, the
regions within semantic substrates could use a treemap [7]
to hierarchically organize nodes. For example, a visualiza-
tion involving genes of multiple species might incorporatea
treemap subdividing the region space hierarchically according
to the taxonomy of genes in the dataset. Node positioning
within each treemap cell could be customizable depending
on users' preferences. Some of the many existing alternative
network visualization algorithms (e.g., layered [44]) could be
incorporated as well. Another useful feature would be a means
of displaying or interacting with the ontological information
associated with each node, if present.

In addition, while our current visualization favors explo-
ration of individual nodes, such as PubMed documents or
genes, and is able to position these nodes based on nodes'
semantic information, more sophisticated link �ltering and
exploration may improve our visualization tool. In particu-
lar, NVSS currently supports link �ltering based on starting
or ending node, but would bene�t from additional �ltering
options based on other link attributes. Also, NVSS's handling
of multiple link �lters is currently limited to “AND” rules
(e.g., show links with source in region X and destination in
region Y), but does not allow “OR” rules (e.g., show links with
source in region X and destination in either Y or Z). Adding
better support for link �ltering and manipulation would result
in more powerful user exploration using semantic substrates.

As the amount of semantically tagged biomedical data
continues to grow, we believe that semantically-relevant vi-
sualizations like semantic substrates will have increasingly
important roles in exploring and understanding biomedical
databases in the near future.
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