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ABSTRACT

Shapes are a concise way to describe temporal variable behaviors.
Some commonly used shapes are spikes, sinks, rises, and drops. A
spike describes a set of variable values that rapidly increase, then
immediately rapidly decrease. The variable may be the value of a
stock or a person’s blood sugar levels. Shapes are abstract. Details
such as the height of spike or its rate increase, are lost in the ab-
straction. These hidden details make it difficult to define shapes
and compare one to another. For example, what attributes of a
spike determine its “spikiness”? The ability to define and com-
pare shapes is important because it allows shapes to be identified
and ranked, according to an attribute of interest. Work has been
done in the area of shape identification through pattern matching
and other data mining techniques, but ideas combining the identifi-
cation and comparison of shapes have received less attention. This
paper fills the gap by presenting a set of shapes and the attributes
by which they can identified, compared, and ranked. Neither the set
of shapes, nor their attributes presented in this paper are exhaustive,
but it provides an example of how a shape’s attributes can be used
for identification and comparison. The intention of this paper is not
to replace any particular mathematical method of identifying a par-
ticular behavior, but to provide a toolset for knowledge discovery
and an intuitive method of data mining for novices. Spikes, sinks,
rises, drops, lines, plateaus, valleys, and gaps are the shapes pre-
sented in this paper. Several attributes for each shape are defined.
These attributes will be the basis for constructing definitions that
allow the shapes to be identified and ranked. The second contri-
bution is an information visualization tool, TimeSearcher: Shape
Search Edition (SSE), which allows users to explore data sets using
the identification and ranking ideas in this paper.

Index Terms: Information Visualization, time series, shape identi-
ficaiton, temporal data, graphical user interface, lines, spikes, sinks,
rises, drops, plateaus, valleys, gaps

1 INTRODUCTION

Shapes are a succinct way of describing the behavior of a tempo-
ral variable. For instance, a spike describes a sharp increase fol-
lowed by a shape decrease. A shape describes a behavior abstractly.
Therefore, the rate a spike increases or the height of the peak, as
well as other details about the variable’s behavior are lost. The ab-
sence of these details makes it difficult to compare one shape to
another. For example, given a spike, how can it be described or
compared to another spike? A lot of work has been done identify-
ing a particular shape in a specific data set, but little work has been
done to examine individual shapes and generalize their use.

Shapes such as spikes, drops and increasing lines are used by
professionals in many different fields to describe the behavior of
temporal variables. Stock market analysts use shapes to describe
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changes in stock prices. Published research results offer concrete
evidence of the usefulness of shape identification. For example,
spikes were used by Balog et al. to understand the mood of bloggers
in relation to world events[2] and by Dettki and Erisson to analyze
the seasonal migration patterns of moose[4]. These shapes are ob-
vious in a visual representation to the informed observer, but they
are often hard to describe precisely and compare to other shapes of
the same type. The ability to identify and rank shapes of interest in
a visualization of temporal data sets can be helpful to novice analyst
and in knowledge discovery.

This paper examines eight simple shapes: lines, spikes, sinks,
rises, drops, plateaus, valleys, and gaps. A spike is defined as a
significant increase in value followed by a significant decrease in
value in a set of sequential points. A sink is a significant decrease
in value followed by a significant increase in value in a set of se-
quential points. A line is a set of sequential points with the same
general behavior.A rise is a sustained increase in value in a set of
sequential points. A drop is a sustained decrease in value in a set
of sequential points. A plateau is a temporary increase in value in a
set of sequential points. A valley is a temporary decrease in value
in a set of sequential points. A gap is a specific type of valley where
the values temporarily decrease to zero.

Each shape will be assessed by a set of measurable attributes.
For example, a line shape’s primary attributes are its endpoints and
slope. An attribute, such as the “spikiness” of a spike, may be
manifested as one or more measurements of the shape’s attributes.
Each measurement or set of measurements represents a different
behavior. The attributes are used to define a shape’s behavior and
compare and rank the shapes. A shape definition consists of one
or more constrained attributes. For instance, a line with the slope
constrained to be positive defines an increasing line. A shape can
have many definitions that identify different behaviors of interest.
A ranking metric is one or more attributes by which a shape is com-
pared to other shapes of the same definition and ranked. A ranking
metric results from one or more calculations performed over values
associated with a particular variable. The shapes that will be dis-
cussed are not an exhaustive set of shapes, nor are the attributes.
This paper presents the idea of identifying behaviors of interest
through shape identification, then ranking the shapes according a
set of attributes.

The shapes and attributes that will be discussed are simple, as are
the measurements of the attributes. This work is not a replacement
for pattern mining techniques, used to identify a unique behavior in
a data set. But the work presents a way of thinking about an identi-
fied behavior of interest and how it is defined and can be compared
to other behaviors.

A subset of the shapes with multiple definitions for each are
incorporated into TimeSearcher: Shape Search Edition (SSE), an
information visualization tool. SSE is built upon TimeSearcher
1[11], and allows for the exploration of temporal data sets by iden-
tifying shapes of interest and ranking them according to a ranking
metric. SSE visualizes shapes and provides a numerical ranking
metric, which allows the shapes to be compared. SSE can iden-
tify shapes like increasing, decreasing, and volatile lines, as well as
spike, sinks, rises, and drops. SSE has several definitions for each



of the shapes to identify different types of behaviors.

2 BACKGROUND

A lot of research has been done to understand how to define shapes.
Some of the research, such as Agrawal et al.’s shape definition lan-
guage (SDL)[1] and Hochheiser, et al.’s timeboxes[10], focuses on
allowing users to define a shape of interest and then identify them
in a data set. Research in the area of pattern discovery has focused
less on the definition of the pattern and more on the value of the
identified pattern. Many of the papers on pattern discovery start to
answer the question “How significant or interesting is the identified
pattern?” Much of the work in this area takes an automated ap-
proach, examining sets of values in a data set and determining their
value based on some function. The idea that patterns can be evalu-
ated to estimate their value to the user is one of the ideas presented
in this paper.

2.1 Shape Definition

Providing an expressive language for identifying and comparing
shapes is one goal of this paper. Agrawal et al. and Hochheiser
et al. present two distinct methods of defining shapes. Both are ex-
pressive, but for different reasons. Agrawal et al.’s SDL provides a
language consisting of an alphabet and a set of operators to define
a shape; Hochheiser et al.’s research has focused on visual widgets
as the method of defining shapes.

SDL provides a simple alphabet to describe point to point tran-
sitions in time series data. For example, the user defined symbol
“Up” may indicate a significant increase in a stock price from one
time point to the next. Using the symbols and the operators users
can define an alphabet to describe any shape. The symbols define
the amount of variation from point to point and the operator de-
scribe the relationship between the symbols.

TimeSearcher 1, an information visualization tool for exploring
time series data, provides different techniques for defining shapes.
The TimeSearcher 1 uses timeboxes and several other types of
queries to allow users to visually define shapes. Timeboxes facili-
tate shape definition by allowing users to visually specify a range of
values for the x and y coordinates of the data points within a shape.
In addition to the timeboxes, TimeSearcher 1, includes an angular
query widget. The angular query widget allows users to define a
range of slope values. The timeboxes are a fairly course-grained
approach to defining shapes, the angular queries provide a much
more granular approach.

QuerySketch[16] allows the user to define shapes of interest us-
ing freehand sketches. Similarly, QueryLines provides a struc-
tured method of creating shapes using a series of line segments.
QueryLines[14] combines the point-to-point expressiveness of SDL
and the dynamic visual query language of TimeSearcher 1. Query-
Lines is an information visualization tool that incorporates visual
shape definition and user defined rankings to identify shapes of in-
terest in temporal and ordered data sets. QueryLines, like Time-
Searcher, can be bound by the x or y values, or both. QueryLines
also allows the user to specify a set of contigous line segments that
define a shape; identified shapes are ranked according to their sim-
ilarity to the user defined shape.

SDL, TimeSearcher 1, and QueryLines enable users to define
shapes of interest and locate their occurrences within a data set.
SDL is an expressive solution that can be tailored to the needs of
its users, but it could be hard to use effectively by common users.
On the other hand, TimeSearcher 1, is less expressive, but pro-
vide the users with the ability to define shapes in terms they un-
derstand (what they can see visually see). Keogh et al. extended
timeboxes create variable time timeboxes (VTT) to increase their
expressiveness[11]. VTT allows user to define a shape and then lo-
cate it over a range of values. Other research offers expressive ways
of defining shapes over categorical data, such as temporal logic[12]

and regular expressions[7], but the techniques do not easily transfer
to temporal data sets. QueryLines has the expressiveness of SDL in
visual query tool, but it is unable to express higher level behaviors,
like anomolous spikes.

2.2 Shape Evaluation

In SDL and TimeSearcher 1, the significance of a shape is based
strictly on whether the shape conforms to the definition or not. Al-
though, the values used by the angular query widget could be used
to define the significance of the identified shape, it is not an inherent
capability in the tool. Because all shapes have the same significance
they can not be compared to one another. However, research in the
area of pattern discovery[9, 8] focuses on evaluating the signifi-
cance of identified shapes. The ability to evaluate the significance
of a shape implies that the identified shapes are comparable by some
measurable attribute. For example, Dubinko et al.’s research in vi-
sualizing the evolution of social network tags, defines “interesting-
ness” as the likelihood of a tag occurring during a particular period
of time[5]. The definition of “interestingness provides a measurable
attribute, frequency of tags occurrence during a particular period of
time, by which tags can be compared. Similarly, clustering tech-
niques are used to identify patterns of interest. In this technique,
similar patterns are grouped together into a cluster[6, 3]. Patterns
identified using this technique can be compared based on the size of
the cluster, the larger the cluster the more interesting the the pattern.
Yang et al.’s STAMP algorithm uses statistics to measure the impor-
tance of identified patterns[17]. Each of these techniques provides
a metric by which an identified pattern can be compared to another
pattern. Unfortunately, these techniques are primarily associated
with pattern discovery techniques and offer users little control over
what patterns are identified.

Garofalakis et al. recognized the “lack of user controlled focus
in the pattern mining process” and introduce a set of algorithms
deemed SPIRIT, Sequential Pattern Mining with Regular Expres-
sion Constraints[7]. This research combines the ability to identify
significance by using some measurable attributes, frequency, and
an expressive definition language, regular expressions. The regular
expressions provide users with the ability to constrain the results re-
turned by the pattern mining algorithm to just the patterns of interest
to the users. This paper goals are to provide capabilities similar to
the SPIRIT algorithms, shape identification and ranking techniques
using a user defined shape definition. Going beyond the SPIRIT
algorithms this paper presents techniques that allow users to define
what is“interesting” in terms that are familar to them.

In addition to assisting users in defining shapes this paper
presents attributes by which shapes can be ranked. There are many
novel techniques for identifying similar patterns, but few offer users
the ability to direct the ranking of the results. The idea of ranking
data according to user-specific feature is not new, Seo and Shnei-
derman’s created the rank-by-feature framework to assist users in
selecting a feature that may interest them[15].

3 SHAPE DEFINITIONS

There are an infinite number of shapes; many of them are too com-
plex to describe succinctly or create mathematical definitions to
identify them. But there are a set of simple shapes that are com-
monly used to describe a particular behavior. In the following sec-
tions several shapes will be described, as well as their attributes.
These attributes will be used to provide examples of shape defini-
tions and ranking metrics. Additionally, examples explaining how
the shapes, their definitions and ranking metric may be used to an-
swer different types of queries will be given. Line, spike, sink, rise,
drop, plateau, valley and gap shapes will be discussed.



Figure 1: Graphs A through D show examples of line shapes. A
shows a 2-point increasing line and B a multi-point constantly de-
creasing line. C is an example of a multi-point decreasing line that
could be identified by a linear regression calculated using the values
that compose it. The last graph, D, is an example of a volatile line,
where volatility is a measure of the standard deviation of the values
in the line.

3.1 Line Shapes

The simplest shape, a line, is defined as one or more line segments
created by a set of contiguous time points. In a 2D Cartesian plane,
a geometric line can be defined using the equation, y = mx + b,
where m is the slope, b is the y-intercept, and x is an independent
variable. A line segment is a portion of a line defined by its end-
points. Line shapes are interesting because they can be used to
describe any other shape, but they are most useful in describing
consistent behaviors, such as generally increasing, decreasing, sta-
ble, or volatile periods. For instance, a stock that consistently rises
over a period of time can be described by an increasing line shape.
Depending on how its attributes are constrained, a line shape can
be used to generalize the behavior of a set of time points or identify
a specific behavior, that is characterized by limited range of value
changes between time points. For example, a linear regression iden-
tifies a relationship between a set of variables, that generalizes their
behavior, but calculating the slope of each individual line segment
can identify a specific behavior.

The attributes associated with line shapes are the length, slope,
and volatility. The length attribute is the number of time points in
the shape. The slope attribute is a measure of the rate at which
the line shape is changing. The slope definition varies depending
on whether the goal is to identify a particular behavior in the time
series or to generalize the behavior of a set of time points. To iden-
tify a specific behavior, slope can be defined as the change in value
between two time points. This definition is identical to the defi-
nition of slope for a geometric line. Using this definition of slope
any constraint applied to the slope must be consistent across every
line segment in the line shape. For example, if one line segment is
increasing, all line segments in the line shape must be increasing.
On the other hand, if the goal is to generalize the behavior of a set
of time points, the slope definition should consider all of the points
together. For example, the slope of a line shape may be defined as:

• amount of change between two time points that may or may
not be contiguous

• the sum of the change of between all contiguous time points
in the line shape

• the geometric slope of a linear regression computed over the
time points in the shape.

These are examples of ways of calculating slopes. Figure 1C
shows a line that could be identified using a linear regression, the
set of values in the line have a decreasing trend. Each of these defi-
nitions describes a different behavior that may be of interest. Using
different definitions for slope will result in different slope calcula-
tions for line shapes, therefore identifying different behaviors.

The term volatility can refer to the relative rate at which a stock
increases and decreases. The same definition will be used to de-
scribe the volatility attribute of a line shape. The standard deviation

of the values within a line shape can be used as a measure of a line’s
volatility. Figure 1D is an example of a volatile line. Other calcu-
lations may be more appropriate for measuring the volatility of line
shape depending on the behavior of interest.

The slope, length, and volatility are attributes by which line
shapes can be defined and ranked. Constraining the slope of a line
shape to be a positive or negative value creates two definitions of
line shapes, increasing and decreasing, respectively. According to
the slope definition, an increasing line shape will characterize dif-
ferent behaviors. Constraining each individual line segment in a
line shape to be negative creates a monotonically decreasing line,
like the line shape in Figure 1B. In addition to constraining the slope
of the line, the number of time points can also be constrained. Fig-
ure 1A is an example of a 2-point line shape; Figures 1B, 1C and
1D are examples of multiple point line shapes.

3.2 Spike and Sink Shapes

Figure 2: These graphs are examples of spike and sink shapes. The
red dots are the peak points. Graph A, B, and C are graphs that may
be ranked high based on its relative or angular height. The relative
height is a measure of the difference between the peak point and
average value of the remainder of the points. The angular height is
the measure of the angle created by the two edges that meet at the
peak point. An edge may consist of one or more points. Graph D is
a spike that could be identified using a linear regression calculated
over the points in the edges to the right and left of the peak point.

Spikes and sinks describe a temporal behavior in which a vari-
able has a significant change over a period of time in one direc-
tion and then a significant change in the opposite direction. The
point at which this change in direction occurs is the peak point. A
spike, specifically, is a significant increase followed by a signifi-
cant decrease. A sink is just the opposite, a decrease followed by
an increase. Spikes and sinks are used by stock market analyst to
describe the behavior of stock prices. Similarly, a doctor may say
when blood pressure spikes there is a rapid rise then fall in pres-
sure. Although the general behavior of spikes and sinks are under-
stood more information is need to identify and compare particular
instances of the shapes.

The attributes associated with spike and sink shapes are the sig-
nificance of the increase or decrease and their duration. The signif-
icant can be manifested in one or more attributes. The significance
of the change can be measured by the absolute, relative, or angular
height of the peak point. The absolute height is the absolute value
of the peak point. The angular height is defined by the angle created
at the peak point. The relative height is defined as the height of the
peak point relative to all the other points in the time series. This
definition will identify spikes and sinks whose behavior is signifi-
cantly different then the rest of the the points in the time series. For
example, the equation, |(max−mean)|/σ could be used to define
the relative height of a spike or sink.

The relative height attribute of a spike or sink shape is affected by
the behavior of all the time points in the time series. The absolute
and angular height definitions have the ability to identify spikes and
sinks in a volatile time series. Volatile time series are characterized
by large changes in opposite directions between a set of consecutive
time points. The duration attribute is given by the sum of time
points contained in both edges plus the peak point. Constraining



these attributes can identify a specific spike or sink shape within a
time series.

The absolute, angular, and relative height attributes, as well as
the duration and edge slope attributes can be constrained to define
different spike and sink shape behaviors and they can be used as
a ranking metric to compare and rank the shapes. The duration
attribute can be constrained to identify sink and spike shapes that
occur over a specific period of time. For instance, a three point and
multiple point definition could be defined. The three point shape
contains exactly three time points, a peak point and a single point
on each side. Three points is the smallest number of points that a
spike or sink shape can contain. The multiple point shape contains
more than three time points.

The peak height can be constrained to create a definition that will
identify shapes which are greater or less than a particular height.
The slope of the leading or trailing period of change can also be
used to define behaviors of interest for spike and sink shapes. By
using these attributes to create shape definitions and rank shapes,
particular behaviors of interest can be identified in temporal data
sets.

3.3 Rise and Drop Shapes

Figure 3: The graphs above are examples of rise and drop shape.
Graph A is a rise. B and C are drops. Graph C shows the three pe-
riods of drop and rise shapes: the leading stable period, the change
period, and the trailing stable period.

Rise and drop shapes are used to describe a sustained change in
the average value. These shapes can be divided into three distinct
periods: a period of change that is preceded and followed by a peri-
ods of stability, Figure 3C. The stable periods are drawn in blue and
the period of change in red. A rise shape has a change period that
increases in value, while a drop shape decreases in value, as seen in
Figures 3A and 3B, respectively. Each period must consist of one
or more time points; there is a single transition point between each
period; and the time points in the shape must be contiguous. Drop
and rise shapes contain a minimum of five points. The periods of
stability separate these shapes from spikes, sinks and lines.

Stable time points have very low volatility, which could be mea-
sured by the standard deviation of the points or some other defi-
nition. In drops and rises, if a set of time points is not stable, it
is changing. A rise and drop shape describes a person’s heart rate
at the start and conclusion of a aerobic workout, respectively. At
the start of a workout a healthy person’s heart rate will transition
from a resting rate of approximately 65 beats per minute (bpm) to
140 bpm. During the period prior to and after the transition the ac-
tive and resting heart rate will be stable until the conclusion of the
workout. This is the type of behavior a rise or drop shape could
identify.

The length of the periods, the change significance, and the aver-
age value of the stable periods are some of the attributes associated
with rise and drop shapes. The length of a period is defined by the
number of time points contained within that period. The change
significance, like the previous shapes, can be defined by the slope
of that period, and the slope can be defined in several different ways
based on the behavior of interest. The average value of the stable
period is the mean of the points in the period.

Period length is the most intuitive attribute to constrain when
creating shape definitions for rise and drop shapes. A definition that
limits the length of the change period to just two points is useful in
identifying rapid change.

3.4 Plateaus, Valleys and Gaps

Figure 4: Graphs A, B and C show a plateau, valley and gap shape,
respectively. Graph D shows the periods associated with plateau,
valley and gap shapes.

Plateaus, valleys, and gaps are used to describe temporary
changes in variable. They differ from spikes and sinks because the
temporary value is sustained for a measurable period of time. These
shapes consist of leading, intermediate, and trailing stable periods,
as well as departing and returning change periods, as shown in Fig-
ure 4D. A plateau has an intermediate stable period, whose average
value is greater than the leading and trailing stable periods (Fig-
ure 4A), while a valley has an intermediate period, whose average
value is less than the average value of other two stable periods (Fig-
ure 4B). A gap is a specific type of valley where the intermediate
period’s values are zero (Figure 4C). Using the workout example,
a plateau describes a person’s heart rate during his or her entire
workout. Prior to the beginning and after the end of the workout,
the heart rate is stable at a resting rate of 65 bpm. At the start of
the workout, to the heart rate leaves the resting rate and rises to
approximately 140 bpm. This heart rate is maintained throughout
the workout. At the conclusion of the workout, the heart rate re-
turns to the resting heart rate and remains there. Plateaus, valleys,
and gaps are very similar to drops and rises, with one important
difference. Drops and rises do not define the behavior that occurs
after the trailing stable period. Therefore, several ranking metrics,
such as the length of the intermediate stable period (the trailing sta-
ble period in the drop and rise shape), have a different meaning in
plateaus, valleys and gaps than in drop and rise shapes.

The ranking metrics are similar to the ranking metrics for drops
and rises, but they are calculated over the additional portions of the
plateaus, valleys, and gaps. Although the calculations are same,
the meanings are different. For example, using the workout exam-
ple, the difference between the mean of leading and trailing stable
periods in plateau shapes may signify a strengthening of the heart.
On the other hand, the difference between the leading and trailing
periods in a rise shape signifies a more strenuous workout.

Definitions that constrain the length of the stable periods are use-
ful when examining plateau, valley and gap shapes. By limiting the
length of a particular period, shapes with a specific duration can
be identified. Definitions that measure the difference between the
leading and trailing stable periods can also be useful.

4 TIMESEARCHER: SHAPE SEARCH EDITION

TimeSearcher: Shape Search Edition (SSE) is an information vi-
sualization tool that allows users to identify shapes and rank them
according to one or more attributes. TimeSearcher SSE is an ex-
tension of TimeSearcher 1. TimeSearcher SSE can identify several
definitions for each of the following shapes, lines, spikes, sinks,
rises and drops and they can each ranked according different at-
tributes. The definitions and ranking attributes are primarly static,
but some of the definitions require user input.



Figure 5: This is a screenshot of TimeSearcher Shape Searcher Edition (SSE). The upper panel shows the seven buttons labeled with the
shapes that TimeSearcher SSE can identify and rank. Each shape has several definitions that can be selected from the drop down box to the
right of the shape buttons. Some of the shape definitions require user defined input, such as the number of time points in the shape. The left
side contains the shapes window, which displays the currently identified shapes for the loaded data set. The window in the upper right contains
the details and definitions tab. The details tab displays the time points and values of a particular time series. The definition tab displays an
explanation of the selected shape definition. The window in the left center is the rankings window. Once a shape and definition have been
chosen from the upper panel the ranking metric value and label for each shape will be shown in this window. The lower right corner contains the
dynamic query bars. These bars allow the shapes to be filtered based on the ranking metric and the endpoints associated with a shape.



4.1 Interface

TimeSearcher SSE consists of four primary windows. The shapes
window on the left side contains time series graphs displaying each
of the identified shapes. The tabbed window on the upper right side
shows a details view, the time points and associated data values, of
a time series in the details tab and the current shape definition in the
definitions tab. The rankings window is on the right side in the cen-
ter. This window displays the ranking metric for an individual shape
and the label for the time series in which it is located. The shapes,
details and rankings windows are tightly connected. Scrolling in
the shapes window causes the rankings window to scroll, so that
the first item in the rankings window is the same as the first graph
in the shapes window. Selecting an item in the ranking window will
cause the details for that time series to be shown in the details win-
dow and graph containing the shape to be the first one shown in the
shapes window. Similarly, mousing over a graph in the shapes win-
dow will cause the details of the graph to be shown. The window
on the lower right hand side contains range sliders which filter the
identified shapes based on its endpoints and the value of the ranking
metric.

The graphs in the shapes window are a visual representation of
time series. These graphs make it easy to identify the shapes created
by plotting the values in a time series. The graph’s y-axis is labeled
with the range of values that the variable takes on throughout the
entire data set. The x-axis is labeled with the time points. The axes
are drawn in black, while the time series is plotted in gray. Each
time point is represented by a small gray dot and each consecutive
dot is connected by a gray line. Each shape is shown in its own
graph; if a time series has more than one unique occurrence of a
shape, then the graph of the time series will appear more than once.
Each shape is labeled in the graph with red lines instead of gray;
points of interest in the shape are marked by large red dots. A
significant point may be the peak point in a spike or sink shape
or the change period in a rise or drop shape.

4.2 Spike and Sink Shape Identification

TimeSearcher SSE has three definitions for both spike and sink
shapes. The definitions define a three, five, and seven point spikes
and sinks and each of these shape definitions can be ranked accord-
ing to its relative and angular height. Each of the shape definitions
and ranking metrics are described below:

• 3-Point Spike/ Sink – a spike or sink shape containing exactly
three time points with a single time point on both sides of the
peak point.

• 5-Point Spike/ Sink – a spike or sink shape containing exactly
five time points with two time points on both sides of the peak
point.

• 7-Point Spike/ Sink – a spike or sink shape containing exactly
seven time points with three time points on both sides of the
peak point.

• Angular Height – the measure of the angle created at the point
where the edges meet. Figure 6A shows the component’s an-
gular height calculation. Using the trigonometric function,
cos(α +β ) = cos(α)∗cos(β )−sin(α)∗sin(β ), the angle cre-
ated by the edges of the spike is equal to cos(α +β ) = (dy1∗

dy2 − 1)/
√

(1+dy12)∗ (1+dy22) where dy1 = |y1 − y2|
and dy2 = |y2− y3|. A linear regression calculated over the
points to the right and left of the peak point, defines the in-
creasing and decreasing edges for the 5 and 7-point spikes.

• Relative Height – the height of the peak point from the mean
of the time series measured in standard deviations. The rela-
tive height is given by the equation |max−mean|/σ . Figure
6B shows the values of the relative height calculation.

Figure 6: The diagrams above show how the angular and relative
height attributes are calculated. The first image shows the com-
ponents of the angular height equation, cos(α + β ) = (dy1 ∗ dy2 −

1)/
√

(1+dy12)∗ (1+dy22). The angular height a measure of the
angle created where the two edge of spikes and sinks meet. The
second image shows the components of the relative height equation,
|max−mean|/σ . The relative height is the height of a spike or sink
relative to the rest of the shape.

All of the definitions and ranking metrics are static, and require
no input from users. Each shape is computed when the data
is loaded. Values such as the mean and standard deviation are
only calculated once and stored within the internal representation
of a time series, an Entity object. The function that identifies
the spikes and sinks takes a parameter that defines how many
points will be in a spike or sink. These shapes are identified
simultaneously. The class attempts to identify shapes as efficiently
as possible, by only passing through the data once. Figures 7 – 9
show examples of spikes and sinks identified by TimeSearcher SSE.

Figure 7: Example of a three point sink ranked according to its an-
gular height. This sink identifies a missing value in this stock market
data.

Figure 8: Example of a 31 point spike identified in X-ray diffraction
data ranked according to its angular height.

Figure 9: Example of a five point spike in a stock price that is highly
ranked according to its angular height.

4.3 Line Shape Identification

TimeSearcher SSE contains four definitions for both increasing and
decreasing line shapes and a single definition for volatile lines. The
first three shape definitions for increasing and decreasing lines are
two point, multiple point, and monotonic slope line shapes. The
fourth definition is a monotonic slope line shape with a constraint
placed on the minimum length. The two point and multiple point
definitions are ranked according to their slope, while the monotonic
slope definition is ranked according to its length and slope. Volatile
lines are defined and ranked according to their standard deviation.
The definitions for each shape and ranking metrics are listed below:



• 2-Point Line – a line shape that contains only two time points.
An increasing line has a positive slope, while a decreasing
line’s slope is negative.

• Multiple Point Line – a line shape that contains multiple
time points. An increasing line has a positive geometric slope,
while a decreasing line’s slope is negative. There are several
ways to measure the slope which are discussed below.

• Monotonic Slope Line – a line shape where each line seg-
ment’s geometric slope has the same sign, positive or nega-
tive.

• Slope – the geometric slope is given by the equation, (y2−
y1)/(x2− x1). The slope of a two point line shape or a line
segment can be calculated using the geometric slope equation.
A multiple point line’s slope is a measure of the geometric
slope of the linear regression calculated over the points in the
line shape. The slope of a monotonic slope line is calculated
in the same fashion.

• Length – the number of time points contained in the line
shape.

This class contains functions to identify multiple point lines and
lines with monotonic slopes. Both functions are passed parameters
by the user to identify multiple point lines of a particular length
and monotonic slope line greater than a particular length. This al-
lows the user to specify a minimum length for the monotonic slope
lines, eliminating the two point lines, which are always monotonic.
Figures 10 – 12 shows examples increasing and decreasing lines
identified by TimeSearcher SSE.

Figure 10: Example of a fifteen point increasing line ranked according
to slope. This line shows the web the term “web” increasing over a
fifteen year period.

Figure 11: Example of a monotonically increasing line in stock market
data ranked highly due to its slope.

Figure 12: Example of a volatile line shape ranked highly according
to its standard deviation.

4.4 Rise and Drop Shape Identification

TimeSearcher SSE contains three definitions for both rise and drop
shapes. These definitions are ranked according to their slope and
the length of their stable periods. The definitions defined by Time-
Searcher SSE are general definitions described in Section 3.3 and
the same definition except the length attribute of the stable periods
is constrained to be a minimum length. Listed below are the defini-
tions:

• Rise or Drop – a sustained change in values. These shapes
consist of three distinct time periods: a stable period, followed
by a period of change, concluding with another stable period.

• Drop or Rise with Multiple Point Stable Period – a rise or
drop shape that contains multiple points in each of its stable
periods.

• Slope – the geometric slope of the period of change. The slope
of the period of change and a line shape are calculated the
same way.

• Length of the Stable Periods – the lowest number of time
points between the two stable periods.

A point is stable if it lies within one standard deviation of the mean
of the other points within the stable period. If a point is not stable
then it is changing. Figures 13 – 14 are examples of rise and drop
shapes.

Figure 13: Example of a rise shape in stock market data. The shape
is highly ranked according to the length of its stable periods.

Figure 14: Example of a drop shape in stock market data. This drop
was identified using the “stable period greater than x” definition which
is ranked according to the slope of the change period.

5 TIMESEARCHER SSE CASE STUDY

TimeSearcher SSE was given to an user to evaluate. The user par-
ticipated in 4 one hour sessions. He examined two different data
sets, network traffic and X-ray diffraction data. The user has been
developing information visualization tools to examine network traf-
fic data for the last 2 years. In his previous position he spent 5 years
as a research physicist using tomography and angular and energy
dispersive X-ray diffraction to idenitify unknown materials.

The network traffic data set consisted of a the number of server
connections per hour made by a particular set of internet protocol
(IP) addresses over a year. The other three data sets consider of
angular dispersive X-ray diffraction (ADXRD) and energy disper-
sive X-ray diffraction (EDXRD) data. X-ray diffraction is used to
observe properties of materials, such as their chemical composition
or a specific physical property, by shining an X-ray beam on a ma-
terial across a range of angles and measuring the scattered intensity
of the X-ray as a function of the incident and scattered angle, po-
larization, and wavelength. The intensity readings produced by this
process can be used as a fingerprint for a material. The fingerprint
consists of intensity readings at various angles. For example, the
element copper (Cu) may produce high intensity readings at angles
19.65, 23.0, and 33.5. Similarly, materials containing copper, such
as covellite (CuS), would produce high intensity readings at similar
angles. In ADXRD, peaks are very sharp, as opposed to EDXRD,
where peaks are much broader. Two of the data sets contained
ADXRD data and the other EDXRD data. The X-ray diffraction
data was gather from an online database[13]. The goal of the X-ray
diffraction case studies was to simulate the identification process of



a unknown substance, by examining a set of materials with one or
more common elements.

The ability to identify the common element would replicate us-
ing a set known elements to identify the elements that make up an
unknown material. The network traffic data was sparse and while
exploring the user noticed small spikes when particular IP addresses
connected to the server, but due to the sparseness of the data set, he
was unable to make any significant discoveries.

The X-ray diffraction data had more interesting results. The
users was able to identify common spikes in each of the data sets.
Iron (Fe), silicon (Si), and sulfur (S) were the common elements
in each of the sessions. In each of the session the user was able to
identify the common element using spike identification and rank-
ings. Each of the data sets yield different results.

In the second session using the silicon ADXRD data some of
the shortcomings of TimeSearcher SSE were shown. It was lim-
ited in its ability to display extremely large data sets. Each sample
contained approximately 8500 intensity readings over a large range
of angles. TimeSearcher SSE was not designed to handle such a
large number of time points in a single time series, so each sample
was divided into 85 separate samples with 100 time points in each
sample. This caused shapes to be split over multiple graph limiting
TimeSearcher ability to identify certain shapes. TimeSearcher SSE
was also limited in its ability to dynamic define shape definitions.
But once these shortcoming were identified the user was able to use
different a different shape to find the behavior he was interested in.
He began to look for increasing lines at the end of the time series
and decreasing lines at the beginning of the following time series.

Figure 15: The user in the case study was able to identify spikes in
Beritherite and Arsenopyrite at similar angular positions with Time-
Searcher SSE. The top two graph show the match spikes. The ele-
ment name and range of angular positions are in the upper left cor-
ner. TimeSearcher SSE was loaded with raw powder X-ray diffraction
data for Beritherite, Awarite, and Arsenopyrite, materials all contain-
ing Fe. A ten point spike ranked according to its angular height was
used to identify these spikes. The angular height value is squared in
red in the ranking window. This discovery indicates that spikes at this
position may be caused by the presence of Fe in the materials.

In the third session the user was able to identify some spikes
with matching intensities and angular positions in the iron ADXRD
data set. The materials in the data set were Arsenopyrite (FeAsS),
Berthierite (FeSb2S4), and Awaruite (Ni3Fe), which all contain Fe.
By experimenting with spikes containing varying number of points,
the user was able to see that Arsenopyrite and Berthierite both had
spikes at angular position 33 and 34, respectively. A ten point
spike definition was used and the results were ranked according to
their angular height. The Arsenopyrite and Berthierite spikes were
ranked consecutively, with normalized values of 97.00 and 97.34,
respectively, as shown in Figure 15. The third material, Awarite, did

not a have a spike ranked at the 33rd or 34th angular positions. But
using an eight point spike definition ranked according to the angu-
lar height, Awarite and Arsenopyrite appear in the ranking window
close together. The angular height of Awarite’s spike at position
33 has a normalized value of 98.3, and the Arsenopyrite a value of
96.3, as shown in Figures 16. Although a definition and ranking
metric that ranked the spikes in similar position for all three mate-
rials together was not found, a correlation could be drawn from the
results.

The best results were given by the EDXRD data, which was gen-
erated by using infrared diffraction. In the fourth session IR diffrac-
tion data was collected for Anhydrite (CaSO4) and Baryte (BaSO4).
Spikes at similar wavelength with similar intensities were identified
in each material, as shown in Figure 17. The spikes had normalized
values of 99.97 in both the Anhydrite and Baryte samples. The
spike definitions were able to describe and rank the spike in the
X-ray diffraction data set.

In addition to the discoveries made in the user case study the
authors have used TimeSearcher SSE to analyze several data sets.
These data sets included weekly closing prices for several hundred
stocks, word frequency for the book, The Making of Americans by
Gertrude Stein, and 125 Human and Computer Interaction (HCI)
keywords over 37 years in a database 40,000 abstracts. In each of
these data sets the authors were able find interesting patterns, unex-
pected anomalies, and errors in the data sets via shape identification
and ranking.

6 CONCLUSION

Shapes are used to describe variable behaviors. Most people are fa-
miliar with the behaviors that are described by shapes. By providing
users attributes to describe and rank shapes particular behaviors can
be more easily identified and knowledge discovery becomes a more
intuitive process.
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