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Abstract	
  
In this paper we talk about speeding up calculation of graph metrics and layout with NodeXL by 
exploiting the parallel architecture of modern day Graphics Processing Units (GPU), specifically 
Compute Unified Device Architecture (CUDA) by Nvidia. Graph centrality metrics like Eigenvector, 
Betweenness, Page Rank and layout algorithms like Fruchterman-Rheingold are essential components 
of Social Network Analysis (SNA). With the growth in adoption of SNA in different domains and 
increasing availability of huge networked datasets for analysis, social network analysts are looking for 
tools that are faster and more scalable. Our results show up to 802 times speedup for a Fruchterman-
Rheingold graph layout and up to 17,972 times speedup for Eigenvector centrality metric calculations. 
 

1.	
  	
  Introduction	
  	
  
NodeXL1 [3] is a network data analysis and visualization [10] plug-in for Microsoft Excel 2007 that 
provides a powerful and simple means to graph data contained in a spreadsheet. Data may be imported 
from an external tool and formatted to NodeXL specifications, or imported directly from the tool using 
one of the supported mechanisms (such as importing a Twitter network). The program will map out 
vertices and edges using a variety of layout algorithms, and calculate important metrics on the data to 
identify nodes of interest. 
 
While NodeXL is capable of visualizing a vast amount of data, it may not be feasible to run its complex 
computation algorithms on larger datasets using hardware that is typical for a casual desktop user. For 
example, while visualizing the voting patterns of 100 senators in Congress is achievable even to low-
powered PCs, larger datasets (like those found in Stanford’s SNAP library2) may contain millions of 
nodes, requiring more substantial hardware. We believe that in order for data visualization tools to 
achieve popularity, it is important that they are accessible and fast for users using average desktop 
hardware. 
 

                                                
1 NodeXL: Network Overview, Discovery and Exploration for Excel http://nodexl.codeplex.com/ 
2 SNAP: Stanford Network Analysis Platform http://snap.stanford.edu/index.html 
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Nvidia’s CUDA3 technology provides a means to employ the dozens of processing cores present on 
modern video cards to perform computations typically meant for a CPU. We believe that CUDA is 
appropriate to improve the algorithms in NodeXL due to the abundance of Graphical Processing Units 
(GPUs) on mid-range desktops, as well as the parallelizable nature of data visualization. Using this 
technology, we hope to allow users to visualize and analyze previously computationally infeasible 
datasets. 
 
In our modified NodeXL implementation, we targeted two computationally expensive data 
visualization procedures: the Fruchterman-Rheingold [1] force-directed layout algorithm, as well as the 
eigenvector centrality node metric.    
 
2.	
  Computational	
  Complexity	
  of	
  SNA	
  Algorithms	
  
Social Network Analysis consists of three major areas - Network Visualization, Centrality Metric 
Calculation and Cluster detection. Popular techniques for Visualization use Force-Directed algorithms 
to calculate a suitable layout for nodes and edges. Computationally, these algorithms are similar to n-
body simulations done in physics. The two most popular layout algorithms are Harel-Koren [2] and 
Fruchterman-Rheingold [1]. The computational complexity of the latter can roughly be expressed as 
O(k (V2+E)) and the memory complexity as O(E+V), where k is the number of iterations needed 
before convergence, V is the number of vertices and E is the number of edges in the graph. Centrality 
algorithms, calculate the "relative importance of each node with respect to rest of the graph". For 
example, betweenness centrality [8] tells how "in-between" a node is within a complete graph by 
measuring the number of all shortest paths that pass through that node. The best known algorithm for 
that takes O(VE + V2logV) time and O(N+V) memory [5]. Eigenvector centrality [8] measures the 
importance of a node by the measure of its connectivity to other "important" nodes in the graph. The 
process of finding it is similar to belief propagation and the algorithm is iterative with the time 
complexity O(k.E).  
In dense graphs, the number of edges E, tends to approach O(V2). With the increase in the E and the V 
value, the computation becomes super-linearly expensive. For example, to calculate Betweenness 
centrality and eigenvector centrality for a graph with V=2,625, and E=99,999 took 570 s and 23 s 
respectively. And for a graph with V=17,425, E=1,785,056 it took 40,265 s and 9,828 s respectively. 
These results were obtained with NodeXL on an Intel Core Duo 3.0 GHz, 3.25 GB RAM, WinXP 
machine. In either commercial or academic worlds, an analysis of a graph with 18k nodes is a 
reasonable task, where as a response time of 12 minutes for Betweenness centrality calculation alone 
isn't. For that matter, networks with over 100,000 nodes are a very common these days. Therefore, 
speedup and scalability are key challenges to SNA. 
Speedup and scalability are two issues that seem very closely connected, but one does not necessarily 
imply the other. A program scales to an input size if it can successfully execute inputs of that size 
within a reasonable time. Speedup is essentially concerned with decreasing the time taken per unit of 
the input. A highly scalable program might take more time than another program that does not scale to 
larger inputs but runs faster on inputs below a certain size. 
 
2.1	
  Approaches	
  for	
  Speedup	
  and	
  Scalability	
  
For speedup, two approaches that immediately come to mind are faster algorithms with better 
implementation and secondly, more hardware to compute in parallel. If we believed that the best 
algorithms (possible, or the best known) are already in place, the second area is worth investigating. 

                                                
3 What is CUDA? http://www.nvidia.com/object/what_is_cuda_new.html 
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Extra hardware to speedup the process could be done in a distributed or parallel environment. 
Distributed computation works on the principle of cheaper loosely coupled hardware [7], where as 
parallel computation works on tightly coupled shared-memory architecture [Supercomputers], but is 
more expensive for the same amount of computational power. Since they are loosely coupled, the 
distributed systems have a bigger overhead of inter-node communication. Since distributed 
architectures are much cheaper and the architecture is much more scalable, from a purely scalability 
perspective, distributed computing is ideal in theory. However, it is the nature of the algorithm which 
determines that whether it can be executed effectively in a distributed environment or not. If the graph 
can be easily partitioned into separate workable sets, then the algorithm is suitable for distributed 
computing, otherwise not. This is because the communication between nodes in such an environment is 
minimal, and so all the required data must be present locally. We divide the set of algorithms used in 
SNA into three different categories based on feasibility of graph partitioning: 

• Easy Partitioning - Algorithm requires only the information about locally connected nodes 
(neighbors) e.g. Vertex Degree Centrality, Eigenvector centrality  

• Relatively Hard Partitioning - Algorithm requires global graph knowledge, but local knowledge 
is dominant and efficient approximations can be made. e.g. Fruchterman-Rheingold  

• Hard Partitioning - Data partitioning is not an option. Global graph knowledge is required at 
each node. e.g. Betweenness centrality which requires calculation of All Pairs of Shortest Paths. 
   

Algorithms that fall under the first category can be made to scale indefinitely using a distributed system 
like Hadoop [9]. For the second category, there is a possibility of a working approximation algorithm, 
whereas nothing can be said about the third category of algorithms. 
Parallel systems on the other hand consist of a shared memory, high speed inter-processor 
communication architecture. So, such a system is ideal for large speedups. While the parallelization on 
such a system may seem easier and more efficient, such hardware is limited in capacity due to cost. A 
supercomputer is more costly than a Hadoop cluster with same cumulative processing power. Hence 
scalability of even the first class of algorithms is not trivial. In the next section we discuss an 
implementation of Eigenvalue Centrality that gives considerable speedups and arguably scalability as 
well. 
  

3.	
  	
  Layout	
  Speedup	
  
3.1.	
  Layout	
  Enhancement	
  
NodeXL includes  about a dozen different layout algorithms to display a user’s data. Many of them are 
based on simple geometric formations (Spiral, Sine Wave, etc), and do not provide an interesting view 
of data in most cases. Two algorithms, Fruchterman-Rheingold and Harel-Koren Fast Multiscale 
provide more interesting views for various data types. The Fruchterman-Rheingold algorithm was 
chosen as a candidate for enhancement due to its popularity as an undirected graph layout algorithm in 
a wide range of visualization scenarios, as well as the parallelizable nature of its algorithm. The 
algorithm works by placing vertices randomly, then independently calculating the attractive and 
repulsive forces  between nodes based on the connections between them specified in the Excel 
workbook. The total kinetic energy of the network is also summed up during the calculations to 
determine whether the algorithm has reached a threshold at which additional iterations of the algorithm 
are not required. 
 
The part of the algorithm that computes the repulsive forces is O(N2), indicating that it could greatly 
benefit from a performance enhancement (the rest of the algorithm is O(|V|) or O(|E|), where v and e 
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are the vertices and edges of the graph, respectively). The algorithm is shown below in pseudo-code 
and computationally intensive repulsive calculation portion of the algorithm is italicized [1]:  
 
 
 
 

area := W * L; { W and L are the width and length of the frame } 
G := (V, E); { the vertices are assigned random initial positions } 
k := sqrt(area/|V|); 
function fa(z) := begin return x2/k end ; 
function fr(z) := begin return k2/z end ; 
 
for i := 1 to iterations do begin 

{ calculate repulsive forces} 
for v in V do begin 

{ each vertex has two vectors: .pos and .disp } 
v.disp := 0; 
for u in V d o 

if (u != v) then begin 
{ D is short hand for the difference} 
{ vector between the positions of the two vertices ) 
D  := v.pos - u.pos; 
v.disp := v.disp + ( D /| D |) * fr (| D |) 

end 
                                          end 

end 
{ calculate attractive forces } 
for e in E do begin 

{ each edge is an ordered pair of vertices .v and .u } 
D  := e.v.pos – e.u.pos 
e.v.disp := e.v.disp – ( D/|  D |) * fa (| D |); 
e.u. disp := e.u.disp + ( D /| D |) * fa (| D |) 

end 
{ limit the maximum displacement to the temperature t } 
{ and then prevent from being displaced outside frame} 
for v in V do begin 

v.pos := v.pos + ( v. disp/ |v.disp|) * min ( v.disp, t ); 
v.pos.x := min(W/2, max(-W/2, v.pos.x)); 
v.pos.y := min(L/2, max(–L/2, v.pos.y)) 

end 
{ reduce the temperature as the layout approaches a better configuration } 
t := cool(t) 

               end 
 
Due to the multiple nested loops contained in this algorithm, and the fact that the calculations of the 
forces on the nodes are not dependent on other nodes, we implemented the calculation of these forces 
in parallel using CUDA. In particular, the vector V was distributed across GPU processing cores. The 
resulting algorithm, Super Fruchterman-Rheingold, was then fit into the NodeXL framework as a 
selectable layout to allow users to recruit their GPU in the force calculation process as shown below: 
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                        Figure 1: NodeXL with Super Fruchterman-Rheingold Layout 
 

	
  

3.2.	
  Results	
  for	
  layout	
  speedup	
  
We ran our modified NodeXL on the following hardware configuration: 
 

Computer 
Hardware 

Description 

GPU GeForce GTX 285, 1476 MHz, 240 cores 
Host CPU 3 GHz, Intel(R) Core(TM)2 Duo 

     Table 1: Hardware configuration for layout speedup testing 

This machine is located in the Human Computer Interaction Lab at the University of Maryland, and is 
commonly used by researchers to visualize massive network graphs. The results of our layout 
algorithm are shown in the table below. Each of the graph instances listed may be found in the Stanford 
SNAP library: 
 

Graph 
Instance 
Name  

#Nodes #Edges  Super F-R 
run time 
(ms)  

Simple F-R 
run time (ms)  

  Speedup 

CA-AstroPh  18,772  396,160  1,062.4  84,434.2     79x 

cit-HepPh  34,546  421,578  1,078.0  343,643.0     318x 

soc-
Epinions1  

75,879  508,837  1,890.5  1,520,924.6     804x 

soc-
Slashdot0811  

77,360  905,468  2,515.5  1,578,283.1     625x 

soc-
Slashdot0902  

82,168  948,464  2,671.7  1,780,947.2     666x 

Table 2: Results of layout speedup testing 

The results of parallelizing this algorithm were actually better than we had expected. The speedup was 
highly variable depending on the graph tested, but the algorithm appears to perform better with larger 
datasets, most likely due to the overhead of spawning additional threads. Interestingly, the algorithm 
also tends to perform better when there are many vertices to process, but a fewer number of edges. This 
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behavior is shown below: 
 

 
                       Figure 2: Graph showing Layout Speedup and number of edges per node 

 
The soc-Epinions1 dataset contains relatively few edges for the number of vertices in the graph (1:6.7 
vertex to edge ratio), leading to a 804x speedup. However, while the cit-HepPh dataset contains a 
similar number of edges, it contains only half the vertices (1:12.2 ratio). As a result, there is only a 
318x speedup. 
 
This behavior is the result of reaping the benefits of many processing cores with a large number of 
vertices, while the calculation of the repulsive forces at each node still occurs in a sequential fashion. A 
graph with myriad nodes with no edges would take a trivial amount of time to execute on each 
processor, while a graph with few vertices and myriad connections between them would still require 
much sequential processing time. Regardless, the Super Fruchterman-Rheingold algorithm performs 
admirably even in the worst case of our results, providing a 79x speedup in the CA-AstroPh set with a 
1:21 vertex to edge ratio. The ability for a user to visualize their data within two seconds when it 
originally took 25 minutes is truly putting a wider set of data visualization into the hands of typical end 
users. 

4.	
  	
  Metric	
  Speedup	
  
4.1.	
  Metric	
  Enhancement	
  
The purpose of data visualization is to discover attributes and nodes in a given dataset that are 
interesting or anomalous. Such metrics to determine interesting data include betweenness centrality, 
closeness centrality, degree centrality, and eigenvector centrality. Each metric has its merits in 
identifying interesting nodes, but we chose to enhance eigenvector centrality, as it is frequently used to 
determine the “important” nodes in a network. Eigenvector centrality rates vertices based on their 
connections to other vertices which are deemed important (connecting many nodes or those that are 
“gatekeepers” to many nodes). 
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The following formula defines the calculation algorithm for eigenvector centrality: 

 
For , where   is the eigenvector centrality of vertex ,  is the adjacency matrix of the 
graph and  is the largest eigenvalue of the adjacency matrix. In matrix form we have: 

 
By the Perron-Frobenius theorem we know that for a real valued square matrix (like an adjacency 
matrix) there exists a largest unique eigenvalue that is paired with an eigenvector having all positive 
entries. 

4.2.	
  Power	
  Method	
  
An efficient method for finding the largest eigenvalue/eigenvector pair is the power iteration or power 
method. The power method is an iterative calculation that involves performing a matrix-vector multiply 
over and over until the change in the iterate (vector) falls below a user supplied threshold. We outline 
the power method algorithm below with the following pseudo-code: 
 

 
        Figure 3: Power Method algorithm 

In the initialization step, the starting iterate is set to a vector of all ones, allowing the algorithm to 
behave deterministically, a useful property for performance analysis. Following initialization, the 
algorithm enters a while loop consisting of a matrix-vector multiply, followed by a calculation of the 
iterate’s Euclidean norm, and finally a vector normalization. Interesting graphs tend to be sparse which 
means the adjacency matrix will generally be sparse, and can be efficiently represented in compressed 
row storage (CRS). In addition to being space efficient, storing the matrix in CRS improves the 
efficiency of the matrix-vector multiply in the loop. The pseudo-code for the sparse matrix-vector 
multiply is: 
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// sparse matrix vector multiply 
for i=0:(n-1) 

for j=0:(numNonZeroElements[i]-1) 
   colIdx = C(I,j); 
   tmp[i] += x[colIdx]; 
 

4.3.	
  Power	
  Method	
  on	
  a	
  GPU	
  
For our implementation we divided the computation between the host and the GPU.  A kernel for 
matrix-vector multiply is launched on the GPU, followed by a device-to-host copy of the resulting 
vector for computation of the vector norm, then a host-to-device copy of the vector norm and finally a 
kernel for vector normalization is launched on the GPU. Below is a figure outlining the algorithm flow 
to allow execution on the GPU: 
 

 
Figure 4: Algorithm flow 

 
Although we could have implemented the summation portion of the vector norm in the GPU, we found 
this changed the order of operations, resulting in different convergence behavior of the algorithm. We 
saw both increases and decreases (sometimes significant) in the number of iterations until convergence 
for the range of problem instances we studied. We felt that it was important to maintain the behavior of 
the algorithm in both the host-only and the GPU version for testing and validation purposes. While 
parallel vector summation was not an option in our case, we were still able to keep most of the vector 
norm computation on the GPU.  We did this by computing part of the vector norm in the matrix-vector 
multiply kernel at the end of the kernel by squaring the output vector element. Therefore, computing 
the norm on the host only involved a vector sum followed by a square root, a relatively fast operation 
on the host CPU4. 
                                                
4 In our testing we found that the time spent computing the rest of the vector norm on the host did not significantly affect the 
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4.4.	
  Results	
  for	
  Eigenvector	
  Centrality	
  speedup	
  
We tested our GPU algorithm on eleven graph instances of up to 19k nodes and 1.7m edges.  As a 
comparison, we used the serial version of the algorithm implemented in NodeXL with C#.  Below is a 
table showing the hardware on which the algorithms were run: 
 
 

Computer 
Hardware 

Description 

GPU GeForce GTX 285, 1476 MHz, 240 cores 
Host CPU 3 GHz, Intel(R) Core(TM)2 Duo 

 

Table 3: Hardware configuration for Eigenvector centrality metric speedup testing 

 

Below is a table and a plot showing the speedups we achieved by running the algorithm on the GPU. 
 

Graph Name  #Nodes  #Edges  Time - GPU(sec) Time	
  -­	
  CPU	
  (sec) Speedup	
  

Movie Reviews  2,625  99,999  0.1874928 23.0 123x 

CalTech Facebook  769  33,312  0.0156244 1.6 102x 

Oklahoma Facebook  17,425  1,785,056  0.5468540 9,828.0 17972x 

Georgetown	
  Facebook	
   9,414 851,278 0.1874928 1,320.0 7040x 

UNC FB Network 18,163  1,533,602 1.8749280 13,492.0 7196x 

Princeton FB Network  6,596	
   586,640  0.093746 495.0  5280x 

Saket Protein  5,492  40,332  0.109370 107.0 798x 

SPI - Human.pin 8,776  35,820  0.078122 263.0 3366x 

Wiki Vote 7,115	
   103,689  0.265614 137.0 516x 

Gnutella P2P 10,874  39,994  0.171868 681.7  3966x 

AstroPh Collab 18,772  396,160	
   0.3437368 2,218.7  6454x 

 Table 4: Tabular view of the speedups 
 
Speedups ranged between 102x and 17,972x.  At first glance there does not seem to be a clear 
relationship between the problem instances and the speedups.  We further investigated this to try and 
explain the results.  We first examined how problem size, measured by the number of edges, affected 
the speedup as shown below: 

                                                                                                                                                                 
overall time of the algorithm. 
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Figure 5: Graph showing Eigenvector Centrality Speedup and number of edges 

 
There is an increase in the speed up as the size of the graph increases. We believe that this is due to the 
effects of scale on the serial CPU implementation for graphs with bigger sizes. 
 
4.5.	
  Scalability	
  
As the results in the next section will show, CUDA helps us achieve huge speedups for Eignevector 
Centrality on small graphs. Let us now discuss the scalability of a CUDA program as the small device 
memory is an obvious bottleneck. An efficient representation of the graph is essential in scaling to as 
large graphs as possible. However, even that does not guarantee scalability to arbitrarily large graphs. 
This is because beyond some size of the graph, the device memory is going to fall short. So, we need a 
scheme where we can partition the data such that we can load, compute on and unload the various 
partitions one by one, without the loss of information. The case where such a partitioning is possible is 
an ideal one but it really depends on the algorithm. We show below that it is possible for Eigenvector 
centrality. We assume that the main memory has enough heap storage of at least twice the size needed 
to hold the graph. 
 

AdjList  := Adjacency List for Graph, G 
Max_GPU_Size :=  maximum size for which the GPU memory can hold the graph G. 
P := ceiling (Sizeof(G)/Max_GPU_Size) // Number of Partitions 
Make P Pseudo pointer representations of partitions of G, such that no partition size > Max_GPU_Size 
EVC_values_new[n], EVC_values_old[n] 
while ( Convergence is not achieved for EVC values) 
       LoadIntoDeviceMemory(EVC_values_new, EVC_values_old) 
       for (i := 0 ; i < P ; ++i) 
           LoadIntoDeviceMemory(Partion  i,) 
           Run EVC algo on GPU 
           DeleteFromDeviceMemory(Partition i) 
       end 
       EVC_values_new = EVC_old_values 
       DeleteFromDeviceMemory(EVC_values_new, EVC_values_old)   
End 
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This arguably provides a scalable Eigenvector Centrality program. As long as the main memory can 
contain the graph information, chunks of the graph can be swapped to and from with the device 
memory. However, if the graph is too large to be held at once in the main memory, more needs to be 
done. Use of virtual memory or an application level file i/o can ensure that the memory demand never 
exceeds its capacity. Although disk storage access is considerably slower than the physical or device 
memory, the data transfer happens only in large chunks at intervals of time. This hypothesis, however, 
needs to be tested for performance in practice for very huge graphs, only a minor fraction of which can 
be loaded into the memory at once. The hierarchy of storage can be viewed as analogous to different 
levels of caching. The actual scaled out implementation is out of the scope of this paper and we 
propose it as an area of the future work. 

5.	
  Future	
  Work	
  
One facet of this work that we hope to discover more about in the future is the scalability of the CUDA 
Super Fruchterman-Rheingold layout algorithm. We were fortunate to have large datasets available 
from the SNAP library, but given the 666x speedup obtained in the largest dataset tested, which 
contains 82,163 nodes, we have yet to determine the limits of the algorithm. It is clear that given the 
restricted amount of memory on today’s GPUs (about 1 GB on high-end cards) that eventually memory 
will become a bottleneck, and we have yet to determine where that limit occurs. There are obviously 
interesting networks that contain millions of nodes, and we hope to be able to provide significant 
speedup for those situations as well. Unfortunately, the Windows Presentation Foundation code which 
paints a graph on the visualization window proved to be the weakest link in the visualization of mult-
million node graphs. On large enough graphs, the WPF module will generate an out-of-memory error 
or simply not terminate. Overcoming this WPF shortcoming would be the first step towards finding the 
bounds of the Super Fruchterman-Rheingold algorithm. 
 
Additionally, there are other algorithms within NodeXL that could benefit from GPU-based 
parallelization. The Harel-Koren Fast Multiscale algorithm [2] is another heavily-used layout algorithm 
in data visualization that is currently implemented sequentially. There is a definite advantage to 
enhancing a multiscale force-directed layout algorithm to run in the time we achieved with the 
Fruchterman-Rheingold enhancement, although given the flow dependency issues in the algorithm, it 
could prove to be difficult to parallelize and might not achieve the same speedup.  
 
We also leave the option open to perform additional portions of the algorithms we modified on the 
GPU, such as the less CPU-intensive tasks in Fruchterman-Rheingold and the summation portion of the 
vector norm in the eigenvector centrality calculation. While delegating this part of the eigenvector 
centrality calculation proved to be problematic due to the modification of order of operations, 
parallelization of this portion remains a possibility. 
 
Finally, the speedup achieved using the eigenvector centrality metric also bring other vertex metrics to 
our attention. In particular, closeness and betweenness centrality are two measures that are used 
frequently in data visualization, and have yet to be implemented using CUDA. Considering each metric 
is calculated at individual nodes, these enhancements should not be particularly difficult to implement 
as well.  
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6.	
  Conclusions	
  
NodeXL is a popular data visualization tool used frequently by analysts on typical desktop hardware. 
However, datasets can be thousands or millions of nodes in size, and a typical desktop CPU does not 
contain enough processing cores to parallelize the various algorithms contained in NodeXL sufficiently 
to execute in a reasonable timeframe. Nvidia’s CUDA technology provides an intuitive computing 
interface for users to use the dozens of processing elements on a typical desktop GPU, and we applied 
the technology to two algorithms in NodeXL to show the benefit that the application can gain from 
these enhancements.  
 
The results obtained from running these enhancements were impressive, as we observed a 79x - 804x 
speedup in our implemented layout algorithm. Further, the 102x - 17,972x speedup gained by 
parallelizing the eigenvector centrality metric across GPU cores indicates that when a CUDA-capable 
GPU is available, it should be used to perform centrality metrics. Such improvement in these execution 
times brings the visualization of data previously infeasible on a standard desktop into the hands of 
anyone with a CUDA-capable machine, which includes low-to-middle end GPUs today. While we have 
by no means maxed out the parallelization possibilities in the NodeXL codebase, we hope to have 
provided enough preliminary results to demonstrate the advantage that CUDA technology can bring to 
data visualization. 
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