
HCIL Technical Report No. 99-10 (May 1999); http://www.cs.umd.edu/hcil

Snap-Together Visualization:
Coordinating Multiple Views to Explore Information

Chris North and Ben Shneiderman*
Human-Computer Interaction Lab, Institute for Advanced Computer Studies,

*Institute for Systems Research, Department of Computer Science
University of Maryland, College Park, MD 20742 USA

north@cs.umd.edu, ben@cs.umd.edu
http://www.cs.umd.edu/hcil

ABSTRACT
Information visualizations with multiple coordinated views
enable users to rapidly explore complex data and discover
relationships. However, it is usually difficult for users to
find or create the coordinated visualizations they need.
Snap-Together Visualization allows users to coordinate
multiple views that are customized to their needs. Users
query their relational database and load results into desired
visualizations. Then they specify coordinations between
visualizations for selecting, navigating, or re-querying.
Developers can make independent visualization tools ‘snap-
able’ by including a few hooks.

KEYWORDS: User Interface, Coordination, Multiple
Views, Tightly Coupled, Information Visualization.

INTRODUCTION
The multiple coordinated views approach is a powerful and
increasingly-employed user-interface technique for
exploring information. Each view is a visualization of
some part of the information, and views are coordinated
(a.k.a. “tightly coupled”, or “linked”) so that they operate
together as a unified interface [NS97].

For example, Microsoft Word’s document-map feature
displays the table of contents of the text in an adjacent
frame. Selecting a heading in the map scrolls the document
text directly to that section. Likewise, scrolling the
document text highlights the current section in the map. A
second example, Windows Explorer actually has 3 views:
The left pane contains the directory hierarchy, the right
pane shows the detailed contents of a selected directory,
and (with “View as Web Page” on) also displays details of
a selected file including a miniature quick-view. In a more
advanced visualization, selecting a record in Spotfire’s
[AS94] starfield displays its attributes in a web browser or

the integrated details pane. On the web, frames are used
like Word’s document map to link tables-of-contents to
main views. However, frame coordinations are only one-
directional due to their use of the hypertext model.

Multiple coordinated views have many advantages that
have been documented in user studies [NWS86] [CWM94]
[SSS86]. Coordination improves user performance. For
example, users can select items in overviews (such as a
table of contents) to produce details (such as the full
chapter) in an adjacent window or to synchronize scrolling
in a French translation. Coordination users can also exploit
relationships to facilitate exploration across information
types. For example, clicking on a city in a map yields a
city description, a calendar of events, and photos in
adjacent views.

However, users often cannot coordinate the visualizations
they need. The choice of visualizations and coordinations
are highly dependent on the information and tasks. Some
common coordinations have been implemented, but others
require custom programming. Development tools, which
focus on the independent view approach, do not support
building coordinated views easily. Hence, a mechanism is
needed to give users the coordinated multiple-view
interfaces they want, yet, at the same time, save designers
from endless development of coordinations.

SNAP-TOGETHER VISUALIZATION
Snap-Together Visualization (STV) is an architecture and
system that allows users to coordinate visualization tools.
Users can build coordinated multiple-view interfaces for
information exploration that are customized to the specific
needs of their data and tasks. Users query their data and
load results into desired visualizations, then establish
coordinations between visualizations for selecting,
navigating, or re-querying. Developers can make
independent visualization tools ‘snap-able’ by simply
including a few hooks with a small amount of code.

Our goals for designing STV are:

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!

1. Coordination: Allow users to coordinate views to
build their own multiple-view user interfaces for
exploring information.

2. Utilize third party visualizations: Allow users to take
advantage of visualization tools built by themselves or
other researchers and developers.

Model
To support the first goal, the coordination model in the
STV user-interface is based on the unit of information,
called an object. There are four major concepts in this
model:

Information is stored in an underlying relational database.
An object represents a tuple. Since users explore
information by following relationships (e.g., select a
directory to discover its contents), the relational model
provides a good basis for coordination. It also provides a
robust general data format and a unique identifier for each
object. An objectID is the tuple’s primary-key value.

A visualization is a view (graphical and/or textual) of a set
of objects (e.g., a scatterplot of data points or text view of
the sections of a document). A query (e.g., SQL) extracts
the records from the database and loads them into the
visualization.

User actions act on individual objects or sets of objects in a
visualization. There are three major categories of actions:
1. Select an object. E.g., click on, mouse over, rubber

band, etc. Visualizations typical respond by visually
highlighting the selected object(s).

2. Navigate to an object. E.g., scroll to, zoom onto, open
subtree of, etc.

3. Query (based on an object). Query and load a new set
of objects into the visualization (by setting the query’s

parameters based on a given object). This allows
navigation through other information in the database.
E.g., load the list of files contained in a given folder.

While exploring, users indicate objects of interest by
selecting or navigating to them. The system responds to
reveal related information by selecting, navigating, or
querying. (We focus on information exploration, not
manipulation or editing tasks.)

Coordination maps actions on objects in one visualization
to actions on objects in another. The two visualizations are
coordinated so that when one of the actions occurs, the
mapped action is also executed in the other view. E.g.,
selecting a section title in the table-of-contents outliner
scrolls the document text to that section.

User Interface
When users open a database with STV, the menu window
(Figure 1) displays a list of all tables and queries stored in
the database, and a list of available visualization tools.
Queries can be added or edited using the database’s visual
query editor or typed in as SQL. Users can then build
coordinated multiple-view interfaces by simply opening
appropriate visualizations and ‘snapping’ them together:

1. Open visualizations via queries. When users select a
table or query from the menu and drag and drop it onto a
visualization in the menu, the visualization opens in a new
window and the results of the query are loaded in. STV
adds a menu to the visualization window for various STV-
related actions. To put a different query result into the
window, users simply drag a new query from the menu
window to this menu. The visualization displays the data
and users can interact with it as a stand-alone application.

2. Snap visualizations together. Users can then

Figure 1: The Snap-Together Visualization window
lists tables and queries in the database and displays a
menu of available visualizations.

Figure 2: In the Snap Specification dialog, users
select which actions to coordinate between two views.
In this example, selecting a case in Spotfire will load
the headnotes of the case in a textual list view.

coordinate any 2 visualizations by a drag-and-drop action
between the STV menus of both visualization windows.
This opens the Snap Specification dialog box (Figure 2),
and users select which actions in each window to
coordinate. Then, the 2 visualizations are tightly coupled
such that interacting in one causes the desired effects in the
other. The coordination between the visualizations can be
modified or deleted using the STV menu on either window.

Any number of visualizations can be opened and
coordinated in this way, allowing users to construct
exploration interfaces consisting of many integrated views.
They can then browse their information, and all views
maintain synchronization. At any time, if an additional

view is needed, users can simply snap it in.

STV creates a new class of users called “coordination
designers”. Coordination designers know the data, have
knowledge of good user interface design, and use STV to
construct coordinated multiple-view interfaces.
Coordination designers can be end-users who snap
visualizations together for their own browsing needs. Or,
coordination designers, like web designers, can build
browsing interfaces for other less-knowledgeable end-users
to explore information. Coordinated designs can be saved,
distributed, and then broadly used by others.

Scenario

Figure 3: A coordinated multiple-view interface, created with Snap-Together Visualization, for exploring directory
structures. Selecting a directory in the treemap (left) also selects it in the outliner (right) and displays its contents in the
grid (bottom).

While Windows Explorer is adequate for some users,
system administrators may benefit if a treemap [Shn92]
visualization were included in its set of views. Treemaps,
which show hierarchies in a recursive slice-and-dice
pattern, are strong in revealing overall layouts of entire
large hierarchies. Administrators can quickly gain an
overview of directory structures to spot buried large or old
files and discover duplicated similar directories (Figure 3).

From a database of a file system, drop the table of
directories into an outliner visualization to display the
directory hierarchy. Drop a query of files for a given
directory into a spreadsheet grid view, and then snap the

two views together, coordinating between the select action
in the outliner to query in the grid. Then, selecting a
directory in the outliner displays its contents in the grid. To
take advantage of more advanced visualization tools,
simply snap in a treemap view by dropping the files and
directories table onto the treemap and then coordinating the
select action to the outliner. Then, selecting a directory in
the treemap highlights it in the outliner, which then displays
its details in the grid. Now administrators can use the
treemap to quickly find suspiciously large groups of files,
easily see where they are in the file structure in the outliner,
and immediately access details of files in the grid to
discover which user is hogging space.

Administrators can easily extend their exploration
environment as needed. For example, to identify
directories to archive, they might snap in a Perspective
Wall [MRC91] visualization for a timeline view. Snap a
Spotfire scatter plot, mapping file creation date to the X-
axis and last access date to Y-access, to locate unused files
on the diagonal. To examine contents of many files, snap a
file viewer to the grid view. Then, they can quickly peak
into files by simply selecting them in the grid. At the
opposite end of the scale, administrators might include an
overview of their network, allowing them to select any

particular file structure to browse in the rest of the views
already created.

Other Features
To demonstrate other features of the STV system, we use a
richer, more complex scenario. STV has immediately
proven its value in our information visualization projects.
For example, WestGroup provides information support for
legal professionals, including databases of millions of court
cases from Federal and state jurisdictions. We used STV to
quickly prototype multi-view visualizations to help

Figure 4: Exploring legal information with a searcher’s workbench created using Snap-Together Visualization. The
Search Term box executes a search query and loads the results into the text view and Spotfire. Selecting a case in
Spotfire highlights the title in the text view and loads details of the case into the Case Viewer (bottom). The Case Viewer
is composed of 3 views (left to right): case overview, headnotes, and decision text. Scrolling in the headnotes and
decision text is synchronized, and selecting in the overview scrolls both.

WestGroup explore user interface alternatives for different
“workbenches” for different types of users.

We first demonstrate building a Case Viewer (Figure 4,
bottom). A case is composed of a judge’s decision text,
which is partitioned into sections. Each section has a
headnote, consisting of a categorization (in a taxonomy of
case law) and annotation. The existing user interface
simply lists out all the information in a single web page
with many intra-links between sections and headnotes.
Since users often refer to headnotes while browsing the
decision text, yet need to scan the decision as a contiguous
text, a two-view synchronized-scrolling approach is
appropriate. The headnotes and decision text are queried
into separate adjacent textual list views. The scroll actions
of both views are coordinated. Then, as users scroll in
either window, the other always shows the related
information.

Since many decision texts are long, containing 10 to 50
headnotes, a good HCI designer might include a small
overview frame for quick access to any section. Query
only the section numbers into another list view, and
coordinate its select action to the scroll-to action of the
Headnotes view. All three windows become coordinated.
Scrolling either detail view highlights the current section
number in the overview, and vice versa.

To make the Case Viewer into a general tool, parameterize
the queries of each view to load a case given its caseID,
using an SQL component like “where decisions.caseID =
?”. Then, create query-to-query coordinations between
them so that when a case is loaded into one, it is loaded into
all 3.

Save Groups: From the STV menu, the coordinated set of
windows can be saved as a group and given a name such as
“Case Viewer”. Then, at any time, selecting the group
name from the STV menu will launch a new instantiation of
the group of 3 coordinated windows. This gives users the
ability to construct new composite visualization tools and
reuse them as snap-able primitives.

Search Box: Users typically browse cases by search terms.
To search for cases, a search query that takes a search
phrase as a parameter and returns a list of hits sorted by
relevance is dropped into a textual list view to show results.
STV provides a simple search box window that can be
snapped to such a results window by coordinating the
search action to the result view’s query action (Figure 4,
top). Entering a search term such as “user interface” in the
search box reveals relevant case titles in the results view.

Then, users can quickly browse the case hits by simply
snapping on a Case Viewer and coordinating the result
view’s select action to the previously-constructed Case-
Viewer’s query action. If search results are large, users can
snap in a visualization tool, such as Spotfire, to help them

spot trends. Selecting a recent and highly relevant case in
Spotfire’s scatterplot highlights the corresponding title,
“Apple v Microsoft”, in the textual results view and
displays the details in the Case Viewer (Figure 4).

Shopping Basket: When exploring such a large database of
cases, users can gather a set of interesting cases into an
STV shopping basket window by drag and drop.

History: In designing user interfaces for information
exploration, we increasingly recognize the need for history
keeping, allowing users to review previous states. An
interesting bonus of the STV architecture is that, since it
receives notification of user actions in all visualizations, it
can easily keep track of the history. The STV history
window displays the history list of actions. Selecting an
action from the list replays it.

Extract: Of course, the reason users must explore
information is to extract the knowledge required to
accomplish some task. For example, an attorney might
need to contact other attorneys of recent similar cases. In a
Spotfire display of attorneys of similar cases, the attorney
selects 25 recent attorneys from the scatterplot, and drag-
and-drops the them onto the “To:” field of an email
message window. STV then presents a small popup list of
the available fields in the dropped records (Figure 5). The
attorney selects the “email address” field, and STV drops
all the email addresses of the selected attorneys into the
field. The attorney then types a message and sends it off.
STV can drop or paste to any OLE compliant window and
extract any fields from records. For visualizations that do
not provide drag-and-drop capability, STV initiates the drag
itself and provides the data since it tracks selection actions.

Figure 5: Users can extract data to a composition
window, such as an email editor, by drag and drop
and then select fields to include in the pasted data.
For example, users could drag attorney records from
a scatterplot to an email message and select to
extract only their email addresses.

ARCHITECTURE
STV is a centralized software system that acts as an
intermediary among the visualization tools and the database
(Figure 6). The visualization tools are actually independent
software programs, potentially built by 3rd party vendors,
augmented only slightly to integrate into the STV
environment via inter-process communication. The
database is also an independent entity generated by
standard relational database software. To edit queries, we
employ the software’s SQL or visual query editor.

When users open a query result into a visualization, several
operations are executed. First, STV executes the query and
receives a recordset, and the selected visualization tool is
launched. Then, if needed, the recordset is translated into
the input format required by that visualization tool, stored
to a temporary file, and the “Load” method of the
visualization is invoked. The visualization behaves as it
normally would, reading in the data file and displaying it.
Database-enabled visualization tools can bypass the query
execution, translation, and storage steps by accepting a
connection and query string directly. STV adds a small
menu palette to the visualization’s window for STV-related
actions by inserting a small child window. This reflects our
vision of STV as integrated into the window- or frame-
management system. Hence, user actions in this palette
invoke STV software.

A visualization tool has a set of user actions that are snap-
enabled. Typically, these are select and navigate actions.
At initialization, the tool communicates this set to STV.
When a pair of visualizations are snapped together, a
mapping is defined as:
 (vizA, actionA, objectIDA) ⇔ (vizB, actionB, objectIDB).

The pair (vizA, vizB) are the visualizations being snapped
together, determined by the source and destination
visualizations of the user’s drag-and-drop snap action. The
pair (actionA, actionB) is specified by the user in the
resulting Snap Specification dialog box. In most cases,
objectIDA = objectIDB, as in primary-key to foreign-key
joins. However, to allow for more complex coordinations
as in data mining applications, they can be related by an
arbitrary relational transformation.

During execution, visualization tools communicate with
STV:
1. Action notification. When users perform an action in

the visualization, a notification message is sent to STV
containing the triple: (visualizationID, action,
objectID).

2. Action invocation. STV can send a message to a
visualization to programmatically invoke an action
normally invoked by the user, as in
visualizationID.execute(action, objectID).

Figure 6: The Snap-Together Visualization architecture. Users select queries to load data into visualizations. Then, they
snap visualizations together to coordinate actions between them. This example demonstrates how the actions propagate
in the interface in Figure 3 when users select a node in the treemap. The same node is selected in the outliner, and then

Database

Query Query Query

Select(objID) Select(objID) Select(objID)

Query
 (<?>:=objID)

SnapSnap

SELECT * FROM files
WHERE parent=<?>

Treemap
Visualization

Outliner
Visualization

Grid
Visualization

Snap-Together Visualization

When users perform actionA on objectIDA in visualization
vizA, notification is sent to STV. In turn, STV applies the
transformation and invokes actionB on objectIDB in vizB.
Select and navigate actions are sent to the visualization for
execution. Query actions are sent to the visualization’s
input query, causing the query to be re-executed using
objectIDB as query parameter value, and then invoke the
visualization’s load operation.

As users snap pairs of visualizations together, STV
maintains an internal graph data-structure representing the
coordination graph. Nodes in the graph are visualizations
and links are the snap mappings between them. When
notified of a user action in a visualization, STV traverses
the graph, invoking the coordinated actions on the linked
visualizations.

To illustrate with the treemap+outliner+grid example
(Figure 6), when users select node X in treemap, it sends a
(select, X) message to STV. STV traverses the
coordinations set up earlier by the user, and sends the
mapped message to the outliner (select, X). Recursing,
STV then sends (query, X) to the Query input for grid. The
grid’s SQL query is: “SELECT * FROM files WHERE
files.parent = ?”. The parameter “?” binds to X, the query
is executed, and the resulting list of files in folder X are
loaded into the grid.

Coordination Properties
Coordinations are:
• Commutative (bi-directional). Given a snapped pair of

visualizations, user action in either visualization causes
action in the other.

• Transitive. If visualization A is snapped to B and B is
snapped to C, then a user action in A will produce
action in B, which will then produce action in C.

 Common coordinated view pairs correspond to data
relationships and other properties of queries. We illustrate
with examples from the WestGroup scenario.
• Synchronized scrolling: Navigate-to-navigate actions

on a one-to-one relationship with a common sort order.
E.g., Headnotes and decision text (Figure 4, bottom
right and center).

• Overview and detail view: Select-to-navigate on one-
to-one relationships where the overview query selects
fewer or smaller fields. E.g., Headnote numbers (one
small field) to headnote text (includes lengthy
annotations). (Figure 4, bottom left and center)

• Hierarchical browsing: Select-to-query on one-to-
many relationships to browse across levels of scale.
Different visualizations may be appropriate at different
levels. E.g., Spotfire display of cases to textual list of
headnotes of a selected case (Figure 4, top right and
bottom center).

• Brushing: Simple brushing is select-to-select on one-
to-one relationships. E.g., Spotfire view of cases to the
textual list of the same cases (Figure 4, top right and

left). More interesting is brushing across a many-to-
many relationship. E.g., Selecting cases in one view to
highlight attorneys involved with those cases in
another view.

 Making Visualizations ‘Snap-able’
 The second goal of Snap-Together Visualization is to allow
users to take advantage of the wide variety of helpful
visualization tools that have been implemented by
researchers and developers. A closed system that only uses
visualizations constructed internal to the system would be
merely a small improvement over a hard-coded multi-view
user interface, would quickly lead to obsolescence, and
therefore would not solve the problem. Hence, we
minimize effort required to make any off-the-shelf third-
party visualization ‘snap-able’ to the extent that even a
fourth party could easily accomplish.

 STV is analogous to the standardized cut-and-paste or drag-
and-drop feature of modern windowing systems. A
centralized server, integrated into the window system,
handles much of the work. Then, with the addition of a few
simple hooks and a small amount of code, a powerful
feature is enabled in an application, making it interoperable
with many others. Effort is low and payoff is large.

 To make STV open, and minimize impact on visualization
tools, we make several assumptions about the tools. They:
• Remain independent software entities, need not be

compiled into STV, run as independent processes, and
can be run as stand-alone applications.

• Use only simple inter-process communication with
STV to send and receive events as (action, objectID)
pairs.

• Must support only the actions they already support
(e.g. select). No major new functionality required.

• Communicate only in terms of object IDs. They
identify and act on an object by its unique ID, and
cannot query or search on attributes.

• Are not aware of the larger data context of the external
STV database, only of the data currently loaded into
them by STV.

• Accept input data in their own format.

To enable a visualization, four hooks are required:
1. Initialization. At initialization, notify STV of available

actions for coordination, such as select or scroll.
2. Action notification. When a user action (e.g., mouse

click to select an object) is processed, send an event to
STV, passing the objectID of the selected object.

3. Action invocation. A method, externally invokable by
STV, programmatically executes a given action on a
given objectID (e.g., highlight a selected object). This
may require some code to search the internal data
structures for objectID.

4. Load. A method, externally invokable by STV,
initiates the existing routine to load data into the
visualization, potentially from the given temporary file.

Data structures may need to be augmented to handle
objectID’s.

To snap enable the treemap visualization tool, which was
originally developed by others, required approximately 2
hours of work for us to add approximately 20 lines of code
to its software. Some well-designed component-based
visualizations, such as Spotfire, already support a full suite
of methods and events. In this case, access to the source
code is not necessary. STV provides a template for a
simple wrapper program that translates the STV
communication protocol to calls to the visualization
component.

The only other requirement is a translator program that
converts the input data from the record set format to the
input format of the visualization tool. However, we claim
this as a gain, not a cost, because only one such translator
ever has to be written for each visualization tool. From the
users’ point of view, this is a big advantage because
traditionally users must write their own translators for each
visualization they use. With STV they need at most one: to
convert their data into a relational database. And
visualization developers need to supply only one: to
convert a record set to their visualization’s format.

IMPLEMENTATION
We have implemented the STV architecture as described in
this paper. It is currently developed on the Windows
platform, using ODBC for database access and COM for
inter-process communication. Any database software could
be used to generate the databases. We use Microsoft
Access. To edit queries, Access’s visual query design tool
is more than adequate.

STV is motivated by our current work with WestGroup and
the US Census Bureau, and other previous projects. It was
well received by professionals in these communities, and
WestGroup is integrating STV concepts into their systems.

FUTURE WORK
The architecture could be extended in several ways.
Multiple objects per action are needed to handle multiple
selections. In addition, generalized multi-way
coordinations with multiple-parameter queries would allow
for several views to participate in a single coordination,
such as simultaneous menus. For example, users could
select a county in one view, an industry from a second
view, and a year from a third view, in any order, to view
production statistics in a fourth view. Multi-object
coordinations could also be accomplished by including
attribute-based coordination, e.g., select objects where 10 <
object.attr < 25. Some visualization tools, such as dynamic
query tools, may be able to support such expressions. This
could also be useful for visualizations that do aggregation
(e.g., histograms).

In terms of the user interface, three major improvements are
needed. First, better window management is needed for
tiling, docking, or grouping windows together [KS97]. For
example, a Case Viewer might be grouped as one window
composed of three sub-frames. Second, a visual
coordination-editor tool might combine the querying and
coordinating steps into a more task-oriented process. Given
one view, what else can I explore from here? Third, a
visual map is needed to indicate what coordinations are in
place between a set of snapped views.

LIMITATIONS
Clearly, STV places a premium on screen space. This
research anticipates large desk-sized displays. We often
use a two-monitor workstation to demonstrate coordinating
many views for information-rich interfaces.

The STV coordination model is based on user actions on
information objects. It is not well suited for coordinating
visual layout and image browsing [PCS95]. Examples
include Adobe PhotoShop’s overview window and the
InfoMural [JS95], where views paint themselves based on
pixel-level information in other views.

The architecture reveals a tradeoff between scalability and
the use of independent visualization tools. There is a
bottleneck in the load operation of some visualizations. The
slowest common denominator problem can arise if
interaction is limited to the speed of the slowest
visualization.

RELATED WORK
Several other systems include some capability for users to
coordinate multiple views. Each is hardwired for one or
two specific coordinations, but allows users to configure
options in the coordination or choose windows to
participate. All of them use a fully internal architecture in
which visualizations must be built within the system using
its internal shared data storage and functionality. The only
exception is Cyberdesk [DAP97], which allows users to
select text in any window, and then choose a “service”,
such as a web search or address book, from a menu to send
the text to the service’s window.

Most common are systems for brushing scatterplots
[BC87], in which painting data points in one plot also
paints them in the others (e.g. select to select). XGobi
[BCS96] provides significant options for brushing, such as
accumulation, color, glyphs, etc. XmdvTool [WA95] stands
out in its ability to brush points (object-based) or regions
(attribute-based). With Visage’s [RLS96] “information-
centric” approach users can drag-and-drop objects between
views and brush them. Its SAGE component overcomes
the problem of a limited set of visualizations by generating
custom data visualizations automatically.

With LinkWinds [JBO94], users connect controls and
views to build a series of filters for scientific visualization.

DEVise [LRB97] coordinates region selections and axes of
graphs to synchronize zoom and pan. In the Apple Dylan
programming environment [DP95], users browse
hierarchical objects by splitting and linking frames so that
selecting a folder in the source frame displays its contents
in the destination frame. Logos, a commercial bible
software package, can coordinate sets of views of different
translations and commentaries to synchronize scrolling by
verses. Spreadsheet Visualization [CBR97], a unique
approach, arranges views as cells in a grid. Then, users can
apply algebraic operations between rows of visualizations.

Of these systems, LinkWinds and Dylan use a drag-and-
drop action to select windows for coordination. Others use
selection from window lists. LinkWinds is the only to
visually indicate coordinated windows, by drawing lines
between them.

Some inspiration for the STV model comes from RMM
[ISB95], a system for constructing web sites from
underlying relational databases. In RMM, relationships
identify hypertext navigation structures, whereas in STV,
relationships correspond to coordinations.

CONCLUSION
Snap-Together Visualization has many benefits for both
visualization developers and users.

For visualization developers:
• Reuses visualizations. STV treats individual

visualization tools as components. Each visualization
needs to be developed only once.

• Simplifies visualization development. Developers can
focus efforts on the primary view of the visualization
and do not need to incorporate supporting views. STV
can supply those.

• Eliminates the need to develop multiple-view
coordinations.

• Steers developers to more rigorous identification of the
purpose and strengths of each visualization tool. E.g.
for what situations should users snap in visualization
X?

 For users and coordination designers:
• Offers advantages of coordinated multiple-view

interfaces, including improved user performance and
rapid exploration across information types.

• Coordinates views without programming.
• Customizes exploration environment to specific data

and tasks.
• Accesses many visualization tools, and multiple-view

composites shared by others.
• Uses single data input format.
• Enables rapid prototyping of workbenches.
• Provides an appropriate user interface when

distributing data to end-users.

Information visualization researchers and developers have
built many helpful visualization tools. With the benefits
listed above, STV users can utilize these visualizations to
build their own coordinated multiple-view user interfaces
for exploring information.

ACKNOWLEDGMENTS
This research is supported in part by funding from
WestGroup and the US Census Bureau. Thanks to Jerome
Brown and Shaun Gittens for the Treemap97
implementation of treemaps. We appreciate comments on a
draft from Ben Bederson and Robert Allen.

REFERENCES
[AS94] Ahlberg, C., Shneiderman, B., “Visual

information seeking: tight coupling of dynamic query
filters with starfield displays”, Proc. ACM CHI'94, pp.
313-317, (1994).

[BC87] Becker, R., Cleveland, W., “Brushing
scatterplots”, Technometrics, 29(2), pp. 127-142,
(1987).

[BCS96] Buja, A., Cook, D., Swayne, D., “Interactive
high-dimensional data visualization”, Journal of
Computational and Graphical Statistics, 5(1), pp. 78-
99, (1996).

[CBR97] Chi, E. H., Barry, P., Riedl, J., Konstan, J., “A
spreadsheet approach to information visualization”,
Proc. IEEE Information Visualization ‘97, pp. 17-24,
(1997).

[CWM94] Chimera, R., Shneiderman B., “An exploratory
evaluation of three interfaces for browsing large
hierarchical tables of contents”, ACM Transactions on
Information Systems, 12(4), pp. 383-406, (Oct. 94).

[DAP97] Dey, A., Abowd, G., Pinkerton, M., Wood, A.,
“CyberDesk: a framework for providing self-
integrating ubiquitous software services”, Proc. ACM
UIST ‘97, pp. 75-76, (1997).

[DP95] Dumas, J., Parsons, P., “Discovering the way
programmers think about new programming
environments”, Communications of the ACM, 38(6),
pp. 45-56, (June 1995).

[ISB95] Isakowitz, T., Stohr, E., Balasubramanian, P.,
“RMM: a methodology for structured hypermedia
design”, Communications of the ACM, 38(8), pp. 34-
44, (August 1995).

[JBO94] Jacobson, A., Berkin, A., Orton, M.,
“LinkWinds: interactive scientific data analysis and
visualization”, Communications of the ACM, 37(4), pp.
43-52, (April 1994).

[JS95] Jerding, D., Stasko, J., “The Information Mural:

a technique for displaying and navigating large
information spaces”, Proc. IEEE Symposium on
Information Visualization, pp. 43-50, (October 1995).

[KS97] Kandogan, E., Shneiderman, B., “Elastic
Windows: evaluation of multi-window operations”,
Proc. ACM CHI’97, pp. 250-257, (March 1997).

[LRB97] Livny, M., Ramakrishnan, R., Beyer, K., Chen,
G., Donjerkovic, D., Lawande, S., Myllymaki, J.,
Wenger, K., “DEVise: integrated querying and visual
exploration of large datasets”, Proc. ACM
SIGMOD’97, pp. 301-312, (1997).

[MRC91] Mackinlay, J., Robertson, G., Card, S.,
“Perspective Wall: detail and context smoothly
integrated”, Proc. ACM CHI'91, pp. 173-179, (1991).

[NWS86] Norman, K., Weldon, L., Shneiderman, B.,
“Cognitive layouts of windows and multiple screens
for user interfaces”, Intl Journal of Man-Machine
Studies, 25, pp. 229-248, (August 1986).

[NS97] North, C., Shneiderman, B., “A taxonomy of
multiple window coordinations”, University of
Maryland, College Park, Dept of Computer Science
Technical Report #CS-TR-3854, (1997).

[PCS95] Plaisant, C., Carr, D., Shneiderman, B., “Image
browsers: taxonomy, guidelines, and informal
specifications”, IEEE Software, 12(2), pp. 21-32,
(March 1995).

[RLS96] Roth, S., Lucas, P., Senn, J., Gomberg, C.,
Burks, M., Stroffolino, P., Kolojejchick, J., Dunmire,
C., “Visage: a user interface environment for exploring
information”, Proc. Information Visualization, IEEE,
pp. 3-12, (October 1996).

[Shn92] Shneiderman, B. “Tree visualization with
treemaps: a 2-d space-filling approach”, ACM
Transactions on Graphics, 11(1), pp. 92-99, (Jan.
1992).

[SSS86] Shneiderman, B., Shafer, P., Simon, R., Weldon,
L., “Display strategies for program browsing: concepts
and an experiment”, IEEE Software, 3(3), pp. 7-15,
(March 1986).

[WA95] Ward, M., Allen, M., “High dimensional
brushing for interactive exploration of multivariate
data”, Proc. IEEE Visualization ’95, pp. 271-278,
(1995).

